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1 Abstract

The question of whether or not there is an efficient algorithm to determine if
two graphs are isomorphic is unsolved. It is a subject of controversy: some
believe one likely exists, while others believe it is impossible. While there are a
number of solved sub-types of graphs, no algorithm has been proven to work for
every case. In this paper I present a polynomial time algorithm that appears to
generalize for non-strongly regular graphs. If there is a polynomial time solution
to make it work on strongly-regular graphs as well, it could mean that GI=P.

2 Introduction and Motivation

This UROP is a continuation of research I began on my own about six months
ago. The question about whether or not there exists a polynomial time algo-
rithm to determine if any two arbitrary graphs are isomorphic is unsolved. The
problem description is very straightforward so when the lack of a solution was
mentioned in a course I took last semester, I was surprised. During the end
of the semester and over the summer I began thinking about novel methods
for identifying if two graphs are isomorphismic in polynomial time. I ran thou-
sands of tests on dozens of different types of graphs, and my algorithm seemed
to be able to discover a mapping of each test. So, I reached out to Professor
Williams to ask about methods to more rigorously test my algorithm. She gave
me a number of suggestions for graphs to try that many known algorithms that
aren’t polynomial time struggle with. While at first my algorithm was able
to solve these with relative ease, as I tested higher node counts I encountered
specific graphs where my algorithm fails. The goal of this UROP was to further
develop my algorithm and explore these problematic graphs in more detail to
better understand why the original iteration of my algorithm didn’t work. In
this paper, I detail the most recent form of my algorithm and my findings about
these edge cases.

The Graph Isomorphism Problem is one great theoretical and practical im-
portance. Graphs are one of the most common and expressive forms of data
representation, and are used in fields ranging from social media, and circuit
design, even to chemical engineering.[3][2] Yet, we have yet to find an algorithm
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that is able to efficiently determine if the structure of two graphs with different
labelings are the same.

The problem is also of great theoretical concern because of its place in the
polynomial time hierarchy. Algorithems that depend on the speed of determin-
ing if two graphs are isomorphic are in the Graph Isomorphism (GI) Complexity
class.[1] If GI were in fact not equal to P , then NP ̸= P, putting an end to one
of the most famous questions in all of computer science. On the other hand, if
GI = P , then it would open many possibilities in industry

3 The Algorithm

3.1 Overview

The mapping between two isomorphic graphs can be checked in polynomial
time. Thus, any mapping produced between two non isomorphic graphs can be
invalidated in polynomial time if the mapping can be generated in polynomial
time. So, the problem can be simplified to discovering a valid mapping between
two isomorphic graphs, G1 and G2.

I first process the graphs in such a way that the initial labeling and order
of edges doesn’t matter. This is done through a modified version of breadth-
first search (BFS) from the perspective, or view, of each node. The search can
be used to find the nodes at each depth from the root which will allow us to
calculate the dominance of each node from that view. This search is done in
O(N+E) time, the dominance calculation for one node is done in O(N2log(N))
time, and there are O(N) nodes, so this step takes O(N3log(N)) time.

While generating the dominances, I can produce dominance layouts for each
node and group them together using a hash table, which doesn’t increase the
asymptotic run time. If there are any groups that contain only one view from
G1 and G2, I know that the roots of both views must map together. If not,
then I can randomly match two nodes in smallest group available. I can use this
information to find more nodes that map together.

Using this information, I then update the mapping and recalculate the dom-
inance of each view using the new mapping to generate new mapping groups for
the views of all nodes that have not yet been mapped. This process will repeat
at most N times because for every iteration, at least one node is mapped. As
a result, the overall algorithm is O(N4log(N)). But, in most cases, only one
or two loops will be needed, suggesting the average run time of this algorithm
is O(N3log(N)). This run time varies depending on the type of graph being
analyzed. If the weights of edges are confined to being integers, I can use an
O(N) sorting algorithm when calculating the dominance, making the over all
run time O(N4).
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Figure 1: Overview of algorithm flow chart

3.2 Views

In this section I explain the initial BFS searches in more detail. I first need to
define a data structure DAGNode, which stores five characteristics: id, index,
depth, children, side-edges, and back-edges. The id is an integer representing
to the original labeling of that node in the inputted graph. index indicates if
the node has already been mapped. It is initialized to -1, and set to a value
i when it is the ith node to be mapped. depth stores the depth at which the
node was discovered from the modified BFS search described below, initialized
to infinity. children, side-edges, and back-edges are lists of the indices of all
incoming and outgoing edges from the node to another node, its neighbors, with
a deeper depth, the same depth, and a shallower depth respectively. All three
are initialized to empty arrays.

First I initialize a list of DAGNodes, one for each node in the graph I am
searching. Let the root of the view be the node from which I want to calculate
the view. I set the depth of the DAGNode of the root to 0. Let A be a list of the
node ids I am currently searching, initially containing only the root. Let B be a
list of the node ids I am going to search in the next step. I look through every
node in A. For each, I look at the edges connected to it. Given an edge from
the node currently being examined, n1, to another node, n2, the edge is given
the following classification: child if the depth of n1 > n2, side-edge if depth of
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n1 = n2, and back-edge if depth of n1 > n2. n2 is appended to the respective
list in the DAGNode of n1. If n2 is a child of n1 and its depth is not equal to
that of n1 + 1, I add it to B, and set its depth to that of n1 + 1. Then I set the
A = B and erase B. I repeat this process until B is empty after all nodes in A
have been examined.

Next, I group all nodes at each depth into a list, then collect all of those lists
in a dictionary which is called depths.

This step is O(N + E) as there are N nodes, and E edges, each of which is
examined at most twice. For dense graphs this is on the order of O(N2), but it
is still in polynomial time.

3.3 Dominance of a View

In this section I describe how I calculate the dominance dictionary of a view,
which will allow us to create a dominance layout. The dominance layout is the
representation of the view that is independent of initial labeling.

The dominance of a view is a dictionary which maps every node to a number
that represents a sort of priority which it has compared to other nodes at its
depth. It is calculated in three steps, each of which can be modified to fit
the exact characteristics of the graph being analyzed. The description below
is for simple graphs as it is the easiest-to-understand version. The nature of
the modifications required for other types of graphs is described in the example
cases section.

The stages of the dominance calculation are as follows: compare dominance
of children, break ties with dominance of side edges, and break further ties with
dominance of back-edges.

Stage 1: I initialize the dominance1 of every node to 2(N + 1). Starting
at the deepest depth, I sort all of the children of each node at that depth
by dominance. Then, for every node at that depth, I calculate its dominance
by looping through every other node at that depth and determining which is
stronger. If the node being examined is stronger then I add 2(N + 1) to its
dominance. In Stage 1, node n1 is stronger than n2 if either it has a greater
index, or n1’s most dominant child is more dominant than that of n2. If it is
a tie, then I compare the next most dominant children. If n1 and n2 have a
different number of children, after all children of the one with the least children
have been compared, the node with more children is considered stronger.

Stage 2: I sort all side edges of every node at the current depth by their
dominance1. After calculating the dominance1 for a given depth, I then calcu-
late dominance2. dominance2 is initialized to be equal to dominance1. I then
look at the side edges of each node at that depth. Similar to Stage 1 I calculate
dominance2 by determining how many other nodes at that depth the examined
node is stronger than. Here, however, stronger is calculated differently. Given
two nodes at the depth n1 and n2, whichever has a larger dominance1 is con-
sidered stronger. If it is a tie, then I look perform a similar check as I did in
the stronger calculation of Stage 1, but this time using the side edges instead
of the children. If n1 is stronger than n2, I add N + 1 to its dominance.
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Stage 3: Stage 3 begins after the dominance2 of all depths has been com-
puted. I now go through the depths in the opposite direction: from shallowest
to deepest. This is done because back-edges connect to nodes with lower depths.
For each node at a given depth, I sort all back edges by their dominance2. I
also initialize dominance3 to the value stored in dominance2. Then, just as with
Stage 1 and Stage 2, I compute dominance3 by comparing each node at a depth
to every other node at that depth to see which is stronger. Here, stronger is de-
termined by the dominance2 of the back-edges in the same manner as in Stage
1 and Stage 2. dominance3 is the final stage and what the function returns, so
for the rest of the paper it will just be referred to as dominance.

The dominance layout of a view is the depth groups sorted by dominance
with the children, side-edges, and back-edges lists for every node sorted by
dominance. Two dominance layouts from the views of n1 and n2 are considered
equal if all of the following requirements are met:

1. The number and magnitude of depths are the same.

2. The number of nodes at each depth is the same.

3. The dominance, index, and color of the of ith node in a depth of n1 is the
same as the ith node of the depth of n2.

4. The children, side-edge, and back-edge lists are the same length and the
dominance, index, and color of the node at each index matches for corre-
sponding nodes in the dominance layout of n1 and n2.

I ultimately decided to export all of these features in the form of an array
for each view. This allowed me to multi-thread this processes, at the cost of
accessing all of the information before being able to determine if two nodes have
different dominance layouts. In the exported form, the array can then be hashed
to reduce the comparison time. But, to ensure the accuracy of the program I
refrained from using the hashing method in my tests. When I also removed
type inference from my code, it ran about 500 percent faster than originally on
larger graphs.

An edge can connect to a maximum of two nodes so O(N2) nodes to be
sorted. 3N dominances need to be calculated for each view and there are 2N
views. This means it takes O(N3log(N)) to calculate the dominance3 for one
iteration of the algorithm. There are a maximum of N iterations which would
make this step take at most O(N4log(N)) time.

3.4 Mapping Groups

The dominance layouts of the two graphs can be used to find which nodes
map to each other. This process involves first grouping the indices of all views
which have the same dominance layout from G1 and G2. These groups are then
categorized by the number of views that share a dominance layout. If there are
dominance layouts in G1 that only have one copy of in G2, these nodes must
match if the graph is isomorphic. Otherwise, the algorithm looks at the group
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with the smallest cardinality, and tries matching the node for the first view
in G1 with the first in G2. If this leads to an invalid mapping, which can be
detected in one step, the algorithm tries the next possible node in G2.

If there are any dominance layouts in G1 that aren’t in G2, or the cardinally
of the number of views with a certain dominance layout in G1 is different than
G2, then no mapping exists, so the graphs aren’t isomorphic.

This method only uses information about the structure of the graph and
known pairings to determine groupings. So, eventually I came up with a new
method of grouping that in addition uses information about nodes that could
pair with the current graph information, even if they aren’t definitely known to
pair. This was done by coloring nodes that exist in a single group with a unique
color, and then including the color as part of the dominance calculation. This
method proved more efficient than the original because it made fewer mistakes
that had to be back tracked and it required less memory allocations. However,
it ultimately didn’t solve the failure cases in certain strongly regular graphs.

3.5 Information Extraction and Map Updates

After determining a pair of nodes that likely map, other pairs can be extracted
by comparing their dominance layouts. The views of both nodes are compared,
and any corresponding nodes that have yet to be mapped and share a unique
dominance for all nodes at its depth are also mapped to each other. New
mapping information can be used to differentiate nodes which originally had
the same dominance layouts in G1 and G2.

Because there are N nodes in a graph, this process takes O(N) time. A
maximum of 2N nodes need to have their information extracted over the course
of one iteration so it takes O(N2) time. The O(N3log(n)) time of calculating
the dominance layouts for one iteration is the most important factor so if it
takes all N iterations to complete, this algorithm takes a total of O(N4log(N))
time.

4 Example Cases

Below are a few example cases illustrating how this algorithm can be generalized
to different graph types. If a graph is already labeled, assign each label a number
and run the algorithm. If it is unlabeled, assign each node a random distinct
number from 1 through N and run the algorithm.

4.1 Simple Graphs

This will work correctly with the basic algorithm, or any other version provided
when the graph is adapted to fit that type. For example, to use the Digraph
algorithm described below, every edge in the simple graph should be replaced
with one edge going in and one going out, both with weights of 1.
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4.2 Digraphs

To make the program run faster (though not asymptotically for dense graphs),
nodes should be stored in such a way that they capture the weights of all in
and out edges to and from that node. This can be done by adding an extra
dimension to the adjacency matrix such that the first element of the edge from
node i to node j represents the weight of an in edge, and the second element
represents the weight of an out edge.

For digraphs to work, two modifications need to be made to the algorithm.
The first is that I must add a step at each stronger function in Stages 1 through
3, to break ties with the weight of that edge. Additionally, all sorting done to
children, side-edges, and back-edges done in the dominance calculation must
first sort with dominance as the most significant feature, then edge weight as
the least significant feature. Out edges should be compared before in edges.
The second modification is that when checking if two dominance layouts are
equivalent, the in and out edge weights must also match for any nodes with the
same depth and dominance.

5 Test Cases

After implementing the algorithms described above, I tested them out on thou-
sands of graphs. I tried graphs ranging from 5 to 500 nodes. Exactly how the
edges were connected varied depending on the type of graph. All experiments
followed the predicted polynomial time trend. The types of graphs tried and
the corresponding success of the algorithm on it can be seen in Table 1.

5.1 Random Dense Graphs

Dense graphs with random edges can be very useful when determining the per-
formance of the algorithm. They are easy to generate and make for useful test
cases for a general graph. Random dense graphs are also one of the easiest types
of graphs for a graph isomorphism algorithm to function on because they are
highly asymmetrical, making them good candidates for assessing the average
performance of the algorithm.

The graphs were generated by defining a graph of n vertices and linking
any vertex with each other with a probability of p. In the experiments below,
p = 0.5. The performance of the algorithm as a function of the number of nodes
is shown in Figure 2. The points seem to stay well under the theoretical worst
case bound. A noticeable feature of the graph is the slight curve up in the
time as N gets large, which theoretically wouldn’t be expected in a polynomial
time algorithm. But, it seems too gradual to be a result of an exponential or
pseudo-polynomial function. Rather, it appears that this is a result of physical
limitations of my computer. My the program doesn’t have enough RAM to
store all of the graph view layouts, so frequent memory allocations need to be
made, slowing the performance. Additionally, as the program runs for longer,
the operating system temporarily pauses the execution of the program to run
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Type Undirected Digraphs Weighted

Binary Trees YES YES YES

Bipartite YES YES YES

Cayley Graphs* YES YES YES
Clique YES YES YES

Complete YES YES YES

Connected Clique Sub-Graphs YES YES YES

Connected Regular Sub-Graphs YES YES YES

Connected Star Sub-Graphs YES YES YES

Connected Strongly Regular Sub-Graphs* NO NO YES

Double Binary Trees YES YES YES

Random Dense* YES YES YES

Random Sparse YES YES YES

Regular YES YES YES

Star YES YES YES

Strongly Regular* NO NO YES

Wheel YES YES YES

Table 1: Table of graph types attempted and if all trials succeeded.

other necessary programs. Additionally, even at it’s highest rate, it is still less
than the theoretical bound.

Experiments were also conducted in which the terminal node of two edges
in the graph were swapped in one of the isomorphic graphs, to produce non-
isomorphic graphs. The algorithm correctly identified all these graphs as non
isomorphic.

5.2 Strongly Regular Graphs and Sub-Graphs

Strongly regular graphs were both taken from data base, and also generated by
Sage Math in their python library and then imported in Julia and experimented
on.[5]

Strongly Regular graphs seem to be the only type of graph that this al-
gorithm truly struggles with. Strongly regular graphs are defined by four pa-
rameters: v, k, λ, and µ. v indicates the number of vertices in the graph. k
represents the degree of each node in the graph. λ is the number of neighbors
shared by any vertex with each adjacent vertex. µ represents the number of
common neighbors among any two non adjacent neighbors.[8]

Only certain combinations of these parameters actually produce graphs that
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Figure 2: Performance of algorithm on random dense graphs

exist, and some can represent a set of many non-isomorphic graphs. I tested
the first few hundred of these parameter sets. While the vast majority of iso-
morphisms for these graphs were correctly discovered, there were some edge
cases, which became more frequent as the complexity of the graphs increased.
For example, the first graph that the program wasn’t able to correctly calculate
had a parameter set of (125, 96, 74, 72), but graphs with all similar parameters
that existed functioned correctly. The next problematic graph wasn’t until the
parameter set (156, 125, 100, 100). After researching at length for mentions of
strongly regular graphs with these parameters in literature, consulting annota-
tions in strongly regular graph databases, and reaching out to an expert in the
field, Professor Josh Grochow at the University of Colorado, I have been unable
to determine what about these graphs makes them special.[6] While it may have
something to do the degrees of symmetry in the graphs, this can’t be the only
factor, as many isomorphisms for more complex graphs are able to be verified
correctly. However, this does play a partial role, since changing even a single
edge or node in the graphs of the edge cases lead to the algorithm to performing
correctly.

Interestingly, I was able to produce more graphs that my algorithm failed on
by connecting all nodes of a complex strongly regular graph, that originally was
correctly processed, to a single super node. I could also produce incorrect cases
when I took a strongly regular graph that normally worked, but added edges
of a new weight to all nodes that weren’t originally connected. This hints that
the issue might in part be a result of limitations in how deep the dominance
layouts get. Perhaps, there isn’t enough distinction in the side edges. This led
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me to think about how I could extract more information out of the graph. This
is when I realized that in the original form of the algorithm, I wasn’t including
information about possible matching groups in the dominance calculation. As
an experiment, I decided to add a color feature to the SmartDAGNodes, and
use this to store what matching group the node was in. Then, was able to
include the color as a factor in the dominance calculation. As described in the
Mapping Groups section, this seemed to improved the speed of matching, but
didn’t prevent the problematic cases. This may be a result of the first match still
being incorrect because all nodes are perceived as having the same dominance.
But, as of now I have been unsuccessful at figuring out a way to better make
this first step.

Experiments were also done on graphs with strongly regular sub-graphs.
A number of scenarios were tried. First, the parameters of the two sub-graphs
were varied. Either they had different parameters, or the same parameters. The
sub-graphs with same parameters could either be isomorphic or non-isomorphic.
Different forms of connectivity were also tested. The graphs could be uncon-
nected, connected with a single edge, or in the case of the graphs with the
same parameters, an edge was added in between each corresponding node in
the sub-graphs. None of these caused problems for the algorithm, unless one of
the sub-graphs was itself an edge case.

5.3 Cayley Graphs

Like strongly regular graphs, Cayley graphs have many degrees of symmetry,
making them hypothetically a very difficult type of graph for a graph ismor-
phism algorithm. To test my algorithm, I pulled samples of Cayley graphs for
every n that was available on the House of Graphs database, that were then
converted from the g6 format to an adjacency matrix using Sage Math.[hog]
The resulting graph was then loaded into Julia, and my algorithm was run on
it. Isomorphisms for all graphs pulled from the data base were correctly iden-
tified, and the performance of my algorithm on the Cayley graphs seems to be
far better than the theoretical upper bound. As can be seen in Figure 3, the
actual run times seem to follow a O(n2) trend. Specifically, the slope of the
best fit line for the set of data produced by (ln(x), ln(y)) where x is the number
of nodes in each graph and y is the time of execution, is 0.732528, suggesting
the original data is well fit by a polynomial of degree e0.732528 = 2.080. This
is likely a result of the the Cayley graphs being fairly sparse compared to the
random Dense graphs and Strongly Regular graphs, while also not being nearly
symmetric enough to really confuse the algorithm.

6 Conclusion

The past semester has helped me make significant progress in better under-
standing the limitations of my algorithm and the complexities of the Graph Iso-
morphism Problem. Through successful experiments with new types of graphs,
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Figure 3: Performance of algorithm on Cayley graphs

and the discovery of new cases that the algorithm doesn’t work on, I have been
able narrow down some of the characteristics that cause it to fail. Namely, very
high symmetry and very high connectivity. I have also been able to use this
information to make improvements to the efficiency of my algorithm, and while
in its current form, it still does not work for all strongly regular graphs, my work
this semester has supplied me with a direction for future research. It’s possible
that one method of better understanding how my algorithm fails is by studying
other algorithms for estimating or identifying isomorphisms, such as Weisfeiler-
Leman, and seeing if my algorithm is subsumed by it.[7] In the case of the
Weisfeiler-Leman algorithm, my algorithm seems to function very differently.
At each iteration, instead of only considering a node’s nearest neighbors, my
algorithm looks at the entire graph from the perspective of that node. Addition-
ally, instead of generating a single canonical representation of the both input
graphs and comparing them as in the Weisfeiler-Leman method, my method
tries to match nodes as it proceeds. My algorithm also doesn’t compare the
union of edges of combinations of non-adjacent nodes, however, as is the case
in Weisfeiler-Leman-k algorithm. Although they function differently, it is still
possible that my algorithm is subsumed by Weisfeiler-Leman-k for some low
dimensional k.[6] This is a path for further research. Another path for future
research is exploring in more detail how my algorithm behaves on other types
of graphs. While I have done preliminary experiments with hyper graphs and
multi graphs, more work is needed to assess the algorithm’s true performance.

All things considered, this project has been a very valuable experience. I am
grateful to Professor Williams for proving me with this opportunity to further
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pursue it in the form of this UROP, and plan to continue research into it on my
own in the coming months.[4]
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