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ABSTRACT
Optical satellites are one of the most valuable sources of

surveillance data, yet there do not seem to be any unclassi-

fied methods that verify their data in real time. We propose a

pipeline that accomplishes this through the frame-by-frame

verification of satellite position, image location, and tempo-

ral accuracy of the image. We also present and implement

a shadow-based method of automatic single-frame image

temporal verification. This model performs well on a dataset

of satellite images of major cities, even when images are

partially obstructed by weather anomalies and cloud cover.

It can accurately approximate the time of day an image was

taken within an hour, but is not yet robust enough for mili-

tary applications.

1 INTRODUCTION
With geopolitical tensions rising and a high potential for

large-scale military conflict, reconnaissance on enemies is

more important than ever. Optical satellites are a significant

source of reconnaissance data [6], with the United States

possessing at least 52 optical satellites [9] to monitor and

influence conflicts such as the War in Afghanistan [12] and

the ongoing Russo-Ukrainian War [10]. Officials and experts

warn that cyberattacks against optical satellites are an urgent

threat [11], with Global Navigation Satellite System (GNSS)

signal spoofing already being performed by Russia [8].

Compromised satellites could return spoofed signals with

incorrect position, navigation, and timing (PNT) data or mod-

ified visual feeds without critical reconnaissance informa-

tion. For example, adversaries can produce altered visual

feeds that depict a different location or the desired location

at a different time. Furthermore, the angle of the satellite

camera could be altered or the satellite trajectory could be

interfered with. Current safeguards against satellite cyberat-

tacks involve encryption, monitoring, and frequency hops

[13]. However, we have found no unclassified techniques for

automatic satellite feed verification.

We propose a satellite feed verification system that is au-

tomatic, real-time, and transparent. This verification system

applies only to images taken between dawn and dusk. Our

frame-by-frame macro-pipeline can be broken down into

four steps: Verifying PNT data, verifying image metadata,

verifying the captured image is taken at the correct time

(by shadow analysis), and comparing to other the results

of prior frames. The macro-pipeline will return a simple

“yes, the satellite is compromised" or “no, the satellite is not

compromised".

This work has three key contributions: (1) We introduce

the idea of automatic temporal satellite visual feed verifi-

cation. Despite extensive research, we were unable to find

other instances of this problem being addressed or proposed.

(2) We outline a complete macro-pipeline that can be used

to implement automatic satellite feed verification. (3) We

implement and evaluate an almost-automatic micro-pipeline

using a shadow-based model to verify that an image from a

satellite feed is taken at the correct time given correct meta-

data and satellite location. Indeed, this model, while only

part of our macro-pipeline, is critical to our satellite verifi-

cation algorithm. While our results are not perfect, they are

promising and suggest clear avenues for future research to

improve performance.

We have introduced the problem and provide background

and motivation in this section. In Section 2, we reference

prior work, and in Section 3, we explain the design of our

model. In Section 4, we describe our dataset and evaluate

our results. Finally, Section 5 is our conclusion and includes

source code for our model.

2 RELATEDWORK
We take inspiration and apply methods from previous re-

searchers for aspects of our macro-pipeline. The first step

of our macro-pipeline regards verifying PNT data: We want

to verify the coordinates that the satellite claims to be at.

Previous researchers have discovered methods to do so: Kal-

abic, Weiss, and Chiu have devised a scheme to verify self-

reported satellite positions [16]. The second step of our

macro-pipeline involves verifying image metadata, particu-

larly the geographical region displayed in the image. There

are a few existing techniques for doing this, of which we

mention two examples: (1) Deep neural networks can analyze

patterns in satellite imagery which can be used to determine

where our image was taken by comparison with an existing

database. In Terrapattern’s implementation [19], a lookup

table of features and locations is generated from a training

set of tagged images. (2) Tang et. al use an adaptive feature

contrast (AdaFC) model in order to account for different

weights of each feature in similarity measurement [21].

The third step of our macro-pipeline regards verifying

the date and time that a photo was taken by analyzing its

shadows. A critical method in this step is shadow isolation
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Figure 1: Steps of macro-pipeline used to determine if the satellite is compromised or not.

in satellite images. These use a variety of techniques that are

classified into three groups: Machine learning-based research

like Khan et. al use CNNs to learn features that represent

positions of shadows [18]. Model-based methods focus on

geometric modeling of the scene, with Fang et. al’s approach

focusing on spectral and geometrical models of shadows

[5]. Property-based methods, on the other hand, focus on

specific features of the image, classifying or segmenting

pixels such as in the following two approaches: Salvador

et. al use specific low-level features such as the intensity,

color, and hue of images to isolate shadows [20]. Silva et.

al introduce an effective chromaticity method which uses

image segmentation on thresholds determined by features

in the image [7].

3 METHODOLOGY
3.1 Overview
Our method aims to independently verify that the satellite

is sending correct, real-time information. To do so, we must

verify that three pieces of information are not compromised

for each image frame: PNT data (satellite position), image

metadata (in particular, image location), and the satellite

photo itself. We are able to assume that the time that the

information was sent is accurate, as a delayed signal would

solely result in inaccurate information (which can be deduced

from our method).

Our macro-pipeline, as stated earlier, consists of four steps:

(1) Verification of satellite position using only the time the

signal is received. (2) Verification of image location using the

verified satellite position. (3) Verification that the satellite

photo is taken at the correct time, given the verified satel-

lite position, verified image location, and time the signal is

received. (4) Combining the results received from the pre-

vious three steps for the specific frame with results from

previous frames in a frame-by-frame, online algorithm. This

macro-pipeline is depicted in Figure 1.

For the first step of our macro-pipeline, we verify the

satellite position using only the time of the information.

We propose the usage of Kalabic et. al’s implementation

[16]. As stated in Section 2, they have devised a proof-of-

location scheme to verify self-reported satellite positions of

a constellation with at least three satellites. The second step

of our macro-pipeline is to verify the image location given

the verified satellite position. We ensure that this desired

location matches the true location of the captured image

using amethod by Tang et. al [21]. They use AdaFC (Adaptive

Feature Contrast) on common and distinct features between

the captured image and a preprocessed image of the desired

location.

The third step of our macro-pipeline is to verify the cap-

tured image is taken at the correct time given the verified im-

age location, satellite position, and time. We have not found

any unclassified solutions to this step, and implement it in

our micro-pipeline, depicted in Figure 2. Our Python-based

implementation is almost-automatic (with only one manual

operation). This micro-pipeline can be broken down into

three segments which are detailed in the following three sub-

sections: Data processing, shadow prediction, and shadow

comparison.

The fourth step of our macro-pipeline uses a sequence of

boolean results, one from each frame. Given a continuous

stream of input data, we find if “No, the satellite is com-

promised" results are outputted at a significant rate for a

consistent reason. After sufficient testing of the first three

steps, we determine the false negative rate of each. Then,

we examine input data for the last 𝑛 frames, where 𝑛 is
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Figure 2: Steps of micro-pipeline used to determine if the satellite image was taken at the correct time.

Figure 3: Unedited satellite image of a selected region
of Boston and Cambridge.

determined after sufficient testing. The proportion of “no"

results derived from each step is measured, and compared

to the measured false negative rates. If any of these three

proportions is statistically significant, then the satellite is

completely compromised.

3.2 Data Processing
Our micro-pipeline begins with data processing. The data

processing step takes in a satellite image as input and out-

puts a height map of the area photographed in the satellite

image. In addition, it transforms satellite image data into a

generalized format.

This step begins with the processing of the satellite image.

Each satellite image in our dataset consists of two files: A

.json file containing image metadata and a GeoTiff file con-

taining the image itself (such as in Figure 3). We process

Figure 4: LiDAR data sparsity on a selected area of
Boston and Cambridge. Blue and yellow areas repre-
sent high and lowmeasurement densities, respectively.

the GeoTiff file by determining the possible longitudes and

latitudes of each point (encoded in the WGS84 standard co-

ordinate system), and storing the RGB representation of the

image.

We are now able to retrieve the necessary LiDAR data

given our processed satellite image. LiDAR (Light Detection

and Ranging) is a remote sensing method that measures the

altitudes of points using discrete projections of an aircraft-

mounted laser onto points on Earth’s surface [1]. Each 1𝑚 ×
1𝑚 square typically receives 15 point measurements, but

variance is high [14], as seen in Charles River in Figure 4.
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Figure 5: Height map of a selected area of Boston and
Cambridge. Yellower areas represent larger Z-values.

LiDAR data is measured in surveys, each in different for-

mats and spanning varying regions. To extract the relevant

LiDAR data, we proceed through a three-step process: (1)

Extract LiDAR squares that cover the geographical region

contained in our captured image. (2) Merge and prune the

points in these squares. (3) Transform the data into a usable

point cloud format.

We first extract LiDAR squares that cover our captured

image. Using the NationalMap API, we are able to search

for LiDAR squares that cover a specific point [4]. We iterate

through the coordinates of our captured image using the

Python geopy library, beginning from the lower left and end-

ing when all areas are covered. Each LiDAR survey encodes

its information with a modified coordinate system (CRS) [3],

which we must convert into the WGS84 standard coorindate

system. While we must manually aggregate them, we could

create a database of them after enough data is processed.

Besides this search, all steps of our pipeline are automatic.

To account for data sparsity and generate a usable height

map, we apply a weighted 4-NN. Each point in our area that

lacks a measurement receives an “implied height" generated

as the distance-weighted average of the heights of its four

nearest neighbors, such that the closer a point is, the more it

impacts the height value. If the distances for the four points

are too large, then the point is not given a measurement.

3.3 Shadow Prediction
The second step of our micro-pipeline is shadow prediction.

Given metadata of an image and the region’s height map (as

seen in Figure 5), this step outputs the predicted shadows in

the resulting image. Our shadow prediction method relies

on three steps: (1) Project the position of the Sun onto each

point in the map generated in Step 1 to create a shadow map,

and project the position of the satellite to create an occlusion

Figure 6: Shadow prediction (without removing oc-
cluded areas) on a selected area of Chicago. Yellower
areas represent more intense shadows.

map. (2) Find regions that are occluded regions from the

shadow map as a result of the scene geometry and position

of the satellite. (3) Process both images to remove occluded

regions.

We fetch the altitude and azimuth of the sun at a specific

date, time, and location using the Python pysolar library, and

verify this against image metadata. Using these angles, we

project the height of each point of the map onto ground level.

We assume projection is orthographic and that the angle of

the Sun is constant for all points in an image. A ray can then

be drawn between each “projecting point" and its “shadow

endpoint". Computationally, this was approximated for each

pixel by collecting the height values for the first 2000 pixels

in the direction of a sun beam, then comparing the maximum

height of an object that would be in shadow at that point to

the actual height of the point (as seen in Figure 6).

However, we must also consider occlusion areas: Regions

that might be in shadow but are hidden by a building as a

result of the angle the satellite is taking an image from. Due to

the nature of camera projection, predicted shadows that are

in occlusion areas do not typically appear on an image due

to the true height of each occlusion area being higher than

the predicted height pulled from the height map. Though we

could correct for the occlusion shadow boundary, we find

that the computational power needed to check which parts

of occluded areas will be shadowed is impractical and would

onlymarginally improves ourmodel, as the shadow detection

method employed is inaccurate on sides of buildings due to

their texture and windows. The occluded areas are calculated

in a similar manner as the shadowed areas, and can be viewed

in Figure 7. To generate our shadow prediction map, we
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Figure 7: Shadow prediction (in blue) and occlusion
prediction (in blue) overlaid with satellite image (in
red).

remove the areas in the occlusion prediction regions from

the shadow prediction regions.

3.4 Shadow Comparison
The third step in our micro-pipeline is shadow comparison.

Given the transformed satellite image data from the data

processing step and the shadow prediction map, this step

outputs a boolean result determining if the captured image

was taken at the correct time. There are three main steps to

determining this value: (1) Isolate shadows from the trans-

formed satellite image. (2) Generate a similarity score by

comparing these isolated shadows and the shadow predic-

tion map. (3) Determine if the image was taken at the correct

time by comparing the previous similarity score with simi-

larity scores generated by comparing isolated shadows with

shadow prediction maps at altered times.

We first isolate shadows from the transformed satellite

image using an algorithm by Silva et. al [7]. As stated pre-

viously, Silva et. al employ a property-based chromaticity

method to segment shadows. In our micro-pipeline, we use

Hong’s implementation of Silva et. al’s model (with Otsu’s

Method of Thresholding replaced by the significantly quicker

K-Means clustering) [15].

Next, we compare the isolated shadows and shadow pre-

diction map, as shown in 8. To determine a similarity score,

we determine the fraction of shadowed pixels in the shadow

prediction map that are also shadowed in the captured image

(which must be in the unit interval). Finally, we determine if

the satellite image was taken at the correct time. For each

image, we feed the shadow prediction step described in Sub-

section 3.3 eleven pieces of altered data, where the time in the

Figure 8: Isolated shadows from satellite image (left)
and shadow prediction map (right) of a region of
Chicago. Yellow areas represent shadows while black
areas represent lack of shadows.

metadata is modified to every hour multiple before and after

the unaltered time. Because shadow prediction isn’t effective

at night, any times before 6AM or after 6PM are disregarded.

Thus, we retrieve a shadow prediction map for every hour

of the day. We compare each of these shadow prediction

maps with the isolated shadows found in the satellite image

to produce eleven altered similarity scores. Of the twelve

total similarity scores, if the similarity score generated by

unaltered data is the highest, then the captured image is ver-

ified to be taken at the correct time. Otherwise, the captured

image is compromised.

4 EXPERIMENTAL RESULTS
4.1 Evaluation
We evaluate our micro-pipeline, which returns the status of

an image based on the similarity score between an image and

the projected shadows at different times. The micro-pipeline

is evaluated on selected photos from nine large American

cities. These urban regions have complex shadows but are

also able to return the most precise results given the larger

shadow sizes from buildings commonly found in cities. We

use a test dataset of 24 images from Planet Labs’s Skysat

50cm database [2], but our access plan limits the scope of our

evaluation. Each image is checked to be between dawn and

dusk, and almost all images are free of significant cloud cover

and weather anomalies. Three exceptions are included to

test the robustness of our model: Two images of Philadelphia

under light cloud cover and moderate cloud cover, and one

additional image of Boston covered with snow. While this

data-set is small, we were limited by the number of square

km we could pull under our free agreement.
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Figure 9: Mean and standard deviations of the regular-
ized similarities at each time difference. Only points
with three or more dt values were plotted.

We assume that our dataset is error-free. Hence, the visual

feed, metadata, and PNT information we use will be assumed

to be correct. We feed our model these three variables in our

24 unaltered examples. The model’s performance on these

examples determines the true negative rate, defined as the

proportion of non-compromised photos that the model veri-

fies. Recall our metric of comparison: We determine if the

similarity score generated with unaltered time data is higher

than the similarity scores generated by each altered time. In

addition to generating similarity scores with modified times

at every hour multiple before and after the unaltered time,

we also generate similarity scores of times 15 and 30minutes

before and after the unaltered time. These four “close" times,

while not used to determine if a satellite image is compro-

mised, are used to better analyse the accuracy of our model.

In no examples where the highest similarity score occurred

at a dt within an hour but not 0, was the similarity score

at 0 lower than one above an hour. They are measured in

addition to the 12 hour-by-hour similarity scores, and are

used in the analysis of the regularized similarity score.

We have two quantitative methods to evaluate our results:

First, we determine the success rate of our model on the 24

unaltered examples. Due to our metric of comparison, it is

not effective to measure the true positive rate (defined as the

proportion of compromised photos that themodel fails to ver-

ify), as introducing random adversarial examples would bias

our results. Second, we calculate the regularized similarity

score (of both altered and unaltered data). This is performed

by assigning the time generating a predicted shadow with

the lowest similarity score for an image (of the 16 measured)

a regularized value of 0, the highest similarity score a regu-

larized value of 1, and every other datapoint a regularized

value between 0 and 1 such that the ratio between its dis-

tances to the highest and lowest similarity scores remains

Figure 10: Similarity score vs change in time for Boston
without snow cover (left) and Boston under snow cover
(right). Blue dots are local similarity scores and orange
lines show maximum score.

invariant. Each similarity score is then assigned a “time dif-

ference", define as the difference between the unaltered time

that the image was taken and the altered time that produces

the specific similarity score. We then aggregate this data for

each of the 24 unaltered examples to determine the mean

and standard deviations of the regularized similarity scores

for each time difference.

4.2 Analysis
Our model is successful on 20 of 24 obstructionless images,

giving an 83.3% true negative rate. Out of these 24 images,

only one has an error of greater than 1 hour. This datapoint

was an outlier due to the failure of the shadow segmentation

algorithm, and will be further discussed later.

Our results are statistically significant: We note that the

mean error is 0.29 hours and the standard deviation of the

error is 0.42 hours. Hence, by using a t-statistic, the 95% con-

fidence interval of the mean error is [0.108, 0.472], ensuring
that the average error is likely less than 0.5 hours. Assum-

ing our data follows a normal distribution, this error will be

under 1.13 hours 95% of the time.

We also measure the mean and standard deviation of

the regularized similarity score for each time difference, as

shown in Figure 9. The mean of the regularized similarity

score is high and extremely similar for the time differences of

0, −15, and −30 minutes. Furthermore, the mean regularized

similarity score for time difference 0 is over 10% greater than

the mean regularized similarity score for every other integer

hour time difference.

It is important to note that we are unable to use a fixed

threshold on similarity score to determine if images are veri-

fied. From our examples, the maximum similarity score of an

image can range from 5.4% to 86.4%. This difference is due

to the different ratio geometries of each satellite image, and
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Figure 11: Isolated shadows of an image of Boston with-
out snow cover (left) and Boston under snow cover
(right). The yellow areas represent shadows.

can only be corrected by examining regularized similarity

scores like our analysis in Figure 9.

Our model is surprisingly robust: it performs well on im-

ages with significant cloud cover and weather anomalies.

Our image of Philadelphia with light cloud cover has an er-

ror of zero, while our image of Philadelphia with heavy cloud

cover has an error of 0.25. We conjecture that this is due to

our comparison metric, which is robust because no matter

the true shadow level, the relative best representation of the

shadows will correspond to the relative maximum similarity

score. We did not find statistically significant difference in

performance against time of day.

Finally, we qualitatively analyze a pair of images that

represent our outlier datapoint. First, we note that the image

of Boston under snow cover has an error of 0.25, while the

image of Boston without snow cover has an error of 5. The

isolated shadows for each image can be viewed in Figure

11. The darker Charles River is believed to be completely

shadowed by our shadow isolation algorithm in the image

without snow cover, but the light snow covering the river

in the other image leads the algorithm to believe that there

the river is clear of shadows. As shown in Figure 10, the true

time was still near a local minimum.

5 CONCLUSION
In this paper, we have devised a method of automatic satellite

feed verification that independently verifies each piece of

information that an imaging satellite sends. We have also

successfully implemented a shadow-based micro-pipeline

that verifies that a satellite image was taken at the correct

time given a verified image location and satellite position.

This micro-pipeline performs quite well given the complexity

of the task, resulting in an 83.3% true negative rate and with

a mean error in the predicted the time an image was taken

of 28 minutes under 95% confidence. It is also quite robust,

with predictions accurate to 15 minutes (on small sample

size) even when images are obfuscated by cloud cover or

snow cover.

While results are promising, our micro-pipeline is not

nearly robust enough to be applicable in real-world situa-

tions. We currently require LiDAR data in order to generate

the shadow prediction map, which can be sparse in foreign

areas and doesn’t account for new developments. Our micro-

pipeline is also simply an approximation; the one-hour pre-

cision level makes it possible for signals to be compromised

by an adversarial agent with knowledge of the system, as

they could retrieve a photo of the location taken at an ap-

proximately correct time. Furthermore, the performance of

our micro-pipeline on types of satellite images such as rural

areas and mountainous terrain is unclear. Finally, our micro-

pipeline also only functions on images taken during daylight

hours and ones without large bodies of water.

There is a multitude of directions we can pursue for our

future steps. Possibly the most imperative is to conduct addi-

tional testing of our micro-pipeline: A larger andmore robust

dataset could more firmly confirm our results. For example,

we can test our model on multiple images of the same region

at different times, or on multiple image sizes focused on the

same region. Testing with smaller time difference intervals,

such as 5 to 10 minutes rather than an hour, would allow for

tighter bounds on estimates of the time an image was taken.

In addition, we can optimize Silva et. al’s shadow isolation

algorithm to improve the robustness of our model on specific

types of images such as those containing bodies of water.

Finally, to replace the inconsistent and often-lacking LiDAR

data, we may be able to infer the height data of a scene using

only its satellite image by employing a U-net architecture

following the work of Karatsiolis et. al [17].

The code for our micro-pipeline is available on github.
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