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Abstract

Hebbian and anti-Hebbian plasticity are widely observed in the bi-
ological brain, yet their theoretical understanding remains limited. In
this work, we find that when a learning method is regularized with L2
weight decay, its learning signal will gradually align with the direction of
the Hebbian learning signal as it approaches stationarity. This Hebbian-
like behavior is not unique to SGD; almost any learning rule, including
random ones, can exhibit the same signature long before learning has
ceased, despite performing no actual Hebbian computation. We also pro-
vide a theoretical explanation for anti-Hebbian plasticity in regression
tasks, demonstrating how it can arise naturally from gradient or input
noise, and offering a potential reason for the observed anti-Hebbian effects
in the brain. Our proposed mechanisms do not rule out conventionally
established forms of Hebbian plasticity and could coexist with them exten-
sively in the brain. More work is needed to develop experimental methods
to distinguish these two types of Hebbian signatures in the brain.

1 Introduction

Hebbian and anti-Hebbian plasticity are the most commonly observed types
of plasticity in the brain (Koch et al., |2013; |Zenke and Gerstner] [2017} |Lis-
man), |1989; [Lamsa et all [2007)). It is a longstanding belief in neuroscience
that Hebbian learning is fundamentally distinct from gradient descent (Hebb)
2005). While Hebbian learning is a simple, unsupervised learning rule that is bi-
ologically plausible, gradient-based optimization is widely regarded as requiring
access to global error signals and precise coordination across layers—properties
not generally supported by neural circuits in the brain. As a result, gradient
descent has been largely dismissed as biologically implausible (Rumelhart et al.,
1986; Whittington and Bogacz, [2019; [Lillicrap et al.,|2020)), despite its centrality
to modern machine learning. Although some recent work has hypothesized algo-
rithms that empirically approximate SGD, which could be implemented through



local learning rules in the brain (Lillicrap et al.l 2020; [Liao et al., |2024]), there
is limited evidence that our brains are actually learning in any of the proposed
mechanisms. At the same time, the mechanistic understanding from the neu-
roscience side on Hebbian learning and anti-Hebbian learning is poor and often
phenomenology-driven. For example, in the spike-timing-dependent-plasticity
(STDP) theory (Caporale and Danl 2008; [Froemke et al., 2005; [Brzosko et al.,
2019), the division between Hebbian and anti-Hebbian learning only depends on
the timing of firing, and there is a lack of understanding of why this is the case.
However, this separation between artificial and biological learning may be less
stark than previously thought. There is some apparent resemblance between
Hebbian learning and SGD. Hebbian learning requires weight decay or forms
of normalization to ensure convergence, as the core Hebbian principle functions
primarily as a learning signal (Oja,|1982b). Similarly, in SGD with weight decay,
SGD serves as the learning signal, while weight decay acts as a regularization
mechanism that promotes robustness and generalization.

In this work, we discover deeper connections between SGD and Hebbian
learning. We demonstrate that the standard training routines used in deep
learning, especially stochastic gradient descent (SGD) with weight decay and
noise, can give rise to learning signals that look Hebbian or anti-Hebbian. Our
results demonstrate that:

1. Close to stationarity, almost any learning rule (including SGD) with weight
decay will have a learning signal that looks like a Hebbian rule; and the
correlation increases monotonically as we use a larger weight decay;

2. When we inject noise into the learning process, the learning signal aligns
anti-Hebbian, and the effect also becomes stronger as the noise gets stronger;

Although the learning dynamics induced by regularization can resemble
those of a mechanistic Hebbian process, they need not involve any Hebbian
computation. In other words, there are two distinct paths to dynamics that
look Hebbian. Our goal is not to decide which is “correct,” nor to speculate
about which the brain employs; both may well operate simultaneously. Instead,
we present an emergent mechanism based on minimal assumptions and show
that it can yield Hebbian-like updates by a different route. The coexistence of
these mechanisms in biological systems would complicate attempts to tell them
apart experimentally and calls for caution when interpreting synaptic measure-
ments. Their differences deserve closer study.

This work is organized as follows. The next section discusses the closely
related works and preliminary concepts to understand our result. Section
studies when SGD is similar to the Hebbian rule. Section [ studies when SGD
is similar to the anti-Hebbian rule. Section [5| studies the dynamical and non-
stationary aspects of these phenomena. Additional figures are presented in the
Appendix.
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Figure 1: Balance of contractive and expansive forces. For deep learning, the
noise and weight decay are, respectively, expansion and contraction forces. When they
do not balance, the gradient must fill in the gap — if noise outweighs weight decay,
the gradient must appear contractive; otherwise, it appears expansive. Similarly, for
biology, the Hebbian dynamics is always expansive, and the anti-Hebbian dynamics
is always contractive. Thus, to reach a balance, a learning signal will look like, and
become aligned with, the Hebbian or anti-Hebbian rule depending on whether it is
expansive or contractive.

2 Related works and Background

Hebbian Learning. As a mathematical model, consider a hidden layer in an
arbitrary network:
hy = Whe(x), (1)

where h, is the postactivation of the previous layer, and h; is the preactivation
of the current layer. In the most conventional form, the simplest homosynaptic
updattﬂ rule states that W is learned according to

AW = snhyh! (2)

where s € {-1,1} is the sign of learning. When s = 1, the rule is Hebbian, which
states that if neuron 7 causes neuron j to fire, then their connection should be
strengthened. Similarly, when s = -1, the rule is anti-Hebbian, as it tends to
reduce correlation between neurons. 7) is a positive time constant, which we
call the “learning rate.” In a neuroscience context, Eq. [2] should be regarded
a discrete-time approximation to the true underlying continuous-time process,
and the rule implies

W = snhahd W, (3)

which increases the norm of W when s > 0 and decreases it when s < 0. There-
fore, Hebbian learning in this limit is always expansive, and anti-Hebbian learn-
ing is always contractive (see Figure [I| for a visualization). Evidence exists to
show that both Hebbian and anti-Hebbian learning exist widely in the brain
(Abbott and Nelson, [2000; [Magee and Grienberger}, 2020). Yet it is not yet
clear when the learning is supposed to be Hebbian as opposed to anti-Hebbian.
Our theory offers a very simple mechanistic answer to this question.

Classical formulations of Hebbian plasticity show that simple local rules can
recover meaningful structure from sensory input, from normalization stabilized
PCA in linear models 1982a; [Sanger, [1989) to higher order feature extrac-
tion in nonlinear and BCM style variants (Bienenstock et al., [1982; (1991}

I'We use this term as a synonym of Hebbian learning.



|Cox and Adams, [2009). Biophysically grounded rules such as voltage-based and
STDP-inspired plasticity (Clopath et al) [2010) and recurrent networks combin-
ing Hebbian excitation with anti-Hebbian inhibition (Zylberberg et al., 2011))
demonstrate how decorrelation, whitening, and sparse receptive fields can arise
in realistic circuits. More recent unifying work shows that many such rules
can implement ICA or sparse coding objectives (Brito and Gerstner} 2016).
Related models explain anti-Hebbian learning as a structured mechanism for
maintaining excitation-inhibition balance and promoting decorrelation (Vogels
let al., 2011} [King et al [2013)). Rather than deriving a particular synaptic rule
from a chosen unsupervised objective, our analysis asks when generic regular-
ized learning dynamics, including supervised settings, naturally produce update
directions that align with Hebbian or anti-Hebbian models near stationarity and
thus is compatible with any additional functional account of how Hebbian or
Anti-Hebbian learning happens in the brain.

Gradient Descent in the Brain. So far, there has not been any strong ev-
idence that the brain could implement and run any form of gradient descent,
despite various theoretical proposals (Kolen and Pollackl, 1994; Lillicrap et al.,
12020; [Whittington and Bogacz, 2019; Richards and Kording, 2023)-and obser-
vations of Hebbian plasticity are often implicitly regarded as evidence against
gradient descent (e.g., see the criticism of heterosynaptic rules in
[Worgotter| (2007))). Our theory shows that gradient descent dynamics can lead
to dynamics at stationarity that are consistent with the Hebbian phenomenon,
and because of this, observations of Hebbian updates are consistent with the
existence of more complicated learning rules in the brain.

Similarity between learning algorithms. A few works are closely related
to ours. Xie and Seung| (2003) shows the equivalence of gradient descent to a
form of contrastive Hebbian algorithm (CHA). However, CHA is not biologically
Hebbian because it is not a homosynaptic rule, required by the Hebbian princi-
ple. There have been several other adjacent ideas to modify the Hebbian rule to
lead to learning performance similar to gradient descent or even mathematical
equivalences to SGD in certain types of models (Scellier et al.| (2018)); Xiao et al.|
(2019)); [Scellier and Bengio| (2019); [Ernoult et al.| (2022))). But these works fail
to provide a general relationship between arbitrary models trained with SGD
and do not identify the key role of regularization and noise.

More recently, it was shown that heterosynaptic circuits such as feedback
alignment or SAL (Liao et all [2024) can lead to dynamics similar to Hebbian
dynamics (Ziyin et al. [2025)). However, to the best of our knowledge, no paper
has successfully shown any robust equivalence between SGD with weight decay
and Hebbian learning. On the machine learning side, a recent theoretical work
(Ziyin et all |2024) suggested that the representation learning in neural net-
works is governed by the expansion and contraction of representations during
SGD training. However, the relevance to Hebbian learning and neuroscience is
unclear.
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Figure 2: The left shows example weight updates with a high alignment between
the learning signal (-Vw¢) and the Hebbian update at the end of training with high
weight decay, while the right image displays an example update at the end of training
with no weight decay which has very low alignment. This figure shows a 20x20 subset
of the direction of the Hebbian and learning signal updates for the second layer of an
SCE after training with 7 = 0.1, and v = 0.05, or v = 0.0. Dimension 1 can be viewed
as the output (post-synaptic) neuron (in the case of SGD, whose incoming weights we
are differentiating), and Dimension 2 are input (pre-synaptic) feature/neurons that
the weight projects from. We are only visualizing a 20x20 subset of these updates for
clarity. Examples of low cosine similarity of the learning signal for v = 0.05 at the start
and end of training can be seen in Figure[I7] In general, we find that stronger weight
decay, larger learning rate, and larger batch size lead to better alignment (Figures m

and .

3 Learning-regularization balance produces Heb-
bian learning

There have been proposals that a balance between Hebbian and anti-Hebbian
dynamics must happen for the brain to reach at least some form of homeostasis
(stationarity) (Xie and Seung, 2003; |1982b} Bienenstock et al.,[1982). There
is a similar effect in gradient-based training in neural networks. The use of
weight decay contracts the weights to become smaller, but learning can hardly
happen if the weights are too small. Therefore, any model that reaches some
level of stationarity in training must have a gradient signal that is expansive
and opposed to the contractive effect of weight decay.
For the layer defined in Eq. [} the full weight update is

AW o ~(T3, (i OB (2) -V, (4)
[ —
learning signal
where £ is the loss function and ~ is the strength of weight decay.

Let us first show that close to stationarity, the gradient always looks con-
tractive. Close to a stationary point, the update should be small in expectation:
EI[(Vhb(w)E)haT(x)] +~7W ~ 0. Thus, after right multiplying the equality by W7
we substitute in Eq. [[and find that

Ex[(Vhy (o) Ohy ()] = Y WW'. ()



We can then use the Frobenius inner product identity to derive the sign,
TE[(Viy () ()] = Eo[(Vi, (9 Oho(2)] = 4 Te[WWT] <0. (6)

Therefore, on average, (V{b(z)ﬁ)hb(x) is negative.

Now, as in |Ziyin et al. (2024), we assume a weak decoupling condition:
|hall? = E[| hal?], which states that norms of all representations are rather close
to each other. This is certainly satisfied when, for example, there is a neural
collapse (Papyan et al., 2020]) or when the representations are normalized. This
means that the expected alignment between the learning signal and the Hebbian
update is given by

E{ T [~(Viy (0D (2) ha(2)hy (2) ]| = ~Ellha|*JE2 [V}, @y ths(2)] - (7)
—_—
learning signal ~ Hebbian update

= VE[ | he 2] Te[WWT] > 0. (8)

Namely, the learning signal has positive correlation with the Hebbian update,
and the alignment becomes stronger as v increases. See Figure[2]for an example
of such alignment.

Perhaps surprisingly, a weaker form of this result generalizes to any up-
date rule, precisely because the weight decay term always aligns with the anti-
Hebbian update; at stationarity the expected learning signal must align with
the Hebbian direction. Consider an arbitrary learning signal g(x,6); the full
weight update is

AW =g(z,0) - W, (9)

where g is the learning rule and 6 is the entirety of all trainable (plastic) pa-
rameters. For clarity, 77 is subsumed into g and «y. Close to stationarity, we have
that E.[g(x,0)] ~ yW.

Now, consider the cosine similarity between the learning rule and the Heb-

bian rule:
B T[Efg(0)]E. [hah]]]
0= VAT 1Blr ~ Ealg(@.0)] 7 |EalhahT 1l (10)

The direction of alignment at stationarity when E,[g(z,6)] =W is thus

Tr[E.[g(z,0)|Es[hahy 1] = 7 Tr [WE, [hahy ]] (11)
= vE[|hs]?] > 0. (12)

We see that the update must have a positive alignment with the Hebbian rule
on average. This shows an intriguing and yet surprising fact: any algorithm
with weight decay may look like a Hebbian rule, and the Hebbian rule may just
be a “universal” projection of more complicated algorithms. This is a weaker
but rather universal result. It is different from Eq. [§| in the sense that Eq.
predicts that the learning signal and the Hebbian rule are statistically correlated,
whereas this result only says that they have the same direction when averaged



over all stimuli. This theory can naturally be extended to the case when the
weight decay strength + is different for different neurons, which we discuss in
Appendix[C.4] Also, this theory can be presented in a fully formal style, which
we present in Appendix [C.5 where we also formally quantify the time scale and
range of the Hebbian dynamics out-of-stationarity.

Neurobiology. A key feature of this simple theory is that it separately consid-
ers the effects of the learning signal and the weight decay, which, in the context
of neurobiology, are likely to have different biological substrates. The learning
signal is a fast process; it is likely to, for example, come from other neurons and
take the form of electric currents and spikes (Lillicrap et al., 2020). The weight
decay, however, is a much slower biochemical process and directly corresponds to
the changes in the biochemical properties of synapses (such as a spine shrinkage
(Stein et al., [2015))). Therefore, the biological realizations of these two processes
are likely to take different forms and can be separately measured. This makes it
particularly important to have a theory for the learning-signal component of the
update, as this can be directly measured through LTD and LTP experiments of
Hebbian plasticity (e.g., see (Zenke and Gerstner}, |2017))). We focus on uniform
L2 weight decay in this work for its ubiquity in machine learning and analytic
simplicity. While Hebbian models often assume some form of L2 weight decay,
the brain is unlikely to implement any perfectly uniform weight decay (Ojal
1982al). Although exploring all non-uniform variants of L2 weight decay is too
broad for thorough empirical testing, Appendix [C-4] extends our analysis to this
domain.

Simulations. We empirically find that this trend holds across a wide vari-
ety of different learning tasks. We ran simulations performing classification on
CIFAR-10 and non-linear regression on synthetic data (Krizhevskyl 2009). We
tested both MLPs and transformers, as well as a range of activation functions
and optimizers. In some situations, the correlation between the two learning
paradigms is very strong (e.g., in Figure [2). In our experiments, we used a
default learning rate of n = 0.01 and trained for 50 epochs, which reached con-
vergence. Since this trend only holds near stationarity—a condition achievable
in full gradient descent but obscured in SGD by noise—we found it best to use
larger batch sizes to compute both the gradient and Hebbian update as sug-
gested in [Xu et al.| (2023)). We found a batch size of 256 to generally show
Hebbian phenomena while being small enough to converge to good solutions
quickly (Figure . To get the alignment between the updates, we compute the
cosine similarity of the direction of the gradient update from the loss function
(the negative gradient in SGD) and the direction of the Hebbian update. Fur-
ther, most experiments reported on in this paper followed one of the following
setups, and any variations will be reported when relevant.

(1) Standard Classification Experiment (SCE): In these experiments,
we trained a small MLP with 2 layers of 128 dimensions and tanh activation
using cross-entropy loss to classify CIFAR-10.

(2) Standard Regression Experiment (SRE): In these experiments,
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Figure 3: The diagram on the left shows that the trend of weight decay increasing
Hebbian alignment of the learning signal is robust across different activation functions.
The diagram on the right shows that the trend can generalize to deeper networks. The
SCE MLPs were modified by varying the activation functions across Linear, ReLU,
Sigmoid, and Tanh (left) and increasing the depth to 6 and layer width to dimension
512 (shown by the 6x512 tanh MLP plot on the right). Layer 1, Layer 2, ... Layer 6
in this diagram indicate the Hebbian alignment with the learning signal for the cor-
responding layer. For a small (or zero) weight decay, the learning process sometimes
exhibits a weak anti-Hebbian alignment, indicated by a negative alignment with Heb-
bian learning. All markers represent the average alignment over the final 100 steps,
averaged across 10 runs with different seeds. The error bars represent the std of the
final average alignment across the seeds. The trend is very robust, and so many of
the bars are obscured by the markers, particularly in the left diagram, for which the
largest std was 0.012.

we trained a small MLP with two hidden layers of 128 units each and tanh
activation, using mean squared error to predict the output of a teacher model.
The teacher has the same architecture but is initialized with different random
parameters. The input and output vectors are both 32-dimensional, with each
element independently drawn from an isotropic Gaussian distribution. The
training dataset consisted of 20,000 randomly generated training examples, and
the validation dataset contained 2,000 examples. For the transformer variant
of the SRE, we used a transformer with 32-dimensional token embeddings, a
vocabulary size of 16, and a maximum sequence length of 32. The encoder
consists of 2 layers with 4 attention heads and 32-dimensional feed-forward
blocks using ReLU activations. The average of the output token embeddings
is passed through the same MLP described above and compared to the teacher
output.

Classification. We train a series of MLPs using the SCE setup to classify
CIFAR-10. Figure[3|shows that as weight decay increases, so does the alignment
of the learning signal with the Hebbian update. The trend persists across dif-
ferent activation functions. Although we still detect this trend in larger MLPS
(Figure [3]), we occasionally observe some layers behaving in an anti-Hebbian
direction as the weight increases. Using residual connections and batch nor-
malization can stabilize the network and make it more Hebbian; however, a



Table 1: For all models, optimizers and learning rules, Hebbian alignment rises with
increasing weight-decay ~. Hebbian alignment (mean + SD, n seeds = 10) at conver-
gence is shown for the 2nd-layer gradient in a regression MLP and a sequence-to-vector
transformer (1st layer for DFA). All experiments were SREs with a few modifications
outside of the learning rule and weight decay specified in the table. DFA used 1 = 0.1
with gradient-norm clip = 5 and, as in the original implementation, used biases. Ran-
domNN used gradient-norm clip = 1 and a target weight L2 norm of 100 to determine
the sign of the update as explained in Section of the Appendix. Table elements
with — indicate the model’s weights collapsed to zero.

Model Learning Rule Weight Decay ()
0 5x107° 5x1074 5x107°
Adam -0.02 £ 0.00 0.10£0.00 0.66 £ 0.01 -
Reeression MLP SGD -0.10+£0.01 -0.06 £ 0.01 0.17+0.01 0.59+£0.01
s DFA 0.45 £ 0.05 0.45+0.04 0.68 £0.05 0.87 +£0.00
RandomNN 0.00 £ 0.00 0.00 £ 0.00 0.05 £ 0.00 0.50 £ 0.00
Adam -0.02 +£0.02 0.50 £0.24 0.99 +£0.02 -
Transformer SGD 0.00 £0.01 0.04 £0.01 0.47 £ 0.06 0.88 +0.03
DFA 0.08 £0.03 0.07 £0.02 0.11 £0.02 0.12 +£0.02
RandomNN 0.00 £ 0.00 0.00 £ 0.00 0.01 £0.00 0.09+£0.01

deeper exploration of this quality is left for future research. We also explore
the use of other regularizations in Appendix By contrast, when we train
the same architecture with a Hebbian rule such as Oja’s on the same data, the
model performs poorly and its learning signal does not align with that of SGD
at convergence (Figure (Ojay (1982b). This shows that classical unsuper-
vised PCA-style Hebbian learning does not reproduce the supervised dynamics
we study, and that the Hebbian-like signatures we observe are a consequence of
regularized supervised optimization rather than explicit PCA feature extraction.

Regression. We also evaluate the generalization of this trend to student-
teacher regression problems as described in SRE. We explored both MLP and
Transformer models and evaluated the Hebbian alignment for learning rules out-
side of SGD. Recall that a key prediction of the theory is that almost any up-
date look like a Hebbian rule when regularized. We test a variety of rules: SGD,
Adam, and Direct Feedback Alignment (DFA) (Ngkland}, 2016]). To demonstrate
that this observation is universal, we also run a setting with a randomly initial-
ized neural network whose output is used as a learning signal, based entirely on
the input data (Random NN). Notably, Random NN should not be able to learn
anything given it is effectively only a deterministic random error signal. Results
are shown in Table[I] In all cases, alignment to Hebbian learning emerges and
becomes stronger as weight decay increases, regardless of the model.
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Figure 4: As the noise increases, the Hebbian alignment decreases and higher weight
decays lead to higher Hebbian alignment (right). The figure on the left displays a
heatmap of the Hebbian alignment of the learning signal at convergence for a number
of different additive noises and weight decays; there is a clear quadratic curve at zero-
alignment as predicted by the theory. The SRE was augmented by adding noise to
each parameter at the start of each iteration with a mean of zero and the specified
standard deviation on the diagram. The trend is even clearer when we follow the
behavior of varying the noise of a specific weight decay (Varying Noise) or the weight
decay of a specific noise standard deviation (Varying Weight Decay). Each cell on the
left and marker on the right represents a single run.

4 Noise-Learning balance leads to Anti-Hebbian
learning

We have answered the question of how Hebbian learning can be an emergent
and phenomenological byproduct. The second part of the question is when we
will see anti-Hebbian learning, as both Hebbian and anti-Hebbian learning are
ubiquitous in the brain. Can anti-Hebbian learning also be a byproduct of more
complicated learning rules?

The analysis in the previous section does not take into account the existence
of noise in learning. In reality, noise is always non-negligible both in biological
learning and in artificial learning. That a strong noise leads to an anti-Hebbian
learning signal can already be explained by looking at a simple linear regression

problem:
U(w) = (whz -y)?, (13)

where z € R?, y € R are sampled from some underlying distribution at every
training step. Here, we inject noise € € N'(0,01) to the weight before every
optimization step so that w = v + €, where v is the weight before noise injection.
This could be a thermal noise that can exist ubiquitously in the brain (London
et al., 2010). It can also be seen as an approximate model of the SGD noise,
which causes w to fluctuate around the mean (Liu et al. 2021)). The learning
signal and Hebbian update are

Agapw = —z(w'z - y), (14)

Apneppw = 2w’ . (15)
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The alignment between the two is

E.[(Asapw)? (Agepbw)] = —|z|*Ee [(ngc)2 - mey] (16)

= ~lz?[(v"2)?* + o*|2)* - v ay],  (17)

which is negative for sufficiently large ¢ and any |z| # 0. Thus, large noise
leads to anti-Hebbian learning.

An interesting question is how this effect competes and trades off with weight
decay. When there is a weight decay, the full weight update is Aggpw =
~z(wTz -y) - yw, and so

E [(Ascpw)” (Anebw)] » —a%co + yer, (18)

where ¢y and ¢; are positive coefficients that depend on the network architecture
and data distribution so can be treated as constants with respect to the weight
decay and noise. Thus, one expects a phase transition boundary at v o< 2.
When ~ is larger than this boundary, the learning is Hebbian-like; when smaller,
the learning is anti-Hebbian like. This result provides a straightforward and
simple framework to potentially test and understand the Hebbian and anti-
Hebbian plasticity in biology. A possible strong biological evidence that would
verify this theory is the simultaneous observations of strong noise in the ambient
space and anti-Hebbian plasticity. In simulation, this scaling law is verified in
the experiments (Figure [, which justifies this simple analysis.

Simulations We ran experiments to validate the noise prediction using a two-
layer MLP with tanh activation. We used a student-teacher model to build a
non-linear regression problem and trained until convergence using SGD and
varying the variance of the Gaussian noise added at each training step, as well
as the weight decay. There is a very smooth alignment trend with SGD, as can
be seen in Figure 4l The white region shows the phase boundary between the
Hebbian phase and anti-Hebbian phase, and shows a shape in accordance with
the quadratic curve v ~ 2.

We observed that at convergence, the Hebbian alignment of the learning
signal is higher in low noise environments, and becomes more aligned with anti-
Hebbian as the noise increases (Figure . Interestingly, we found that solutions
with high generalization generally had low Hebbian and anti-Hebbian alignment
(Figure [5).

We also observed this trend with other optimizers such as Adam (Figure
13)). However, we struggled to robustly reproduce this effect outside of the
last few layers of much larger networks or those doing different learning tasks,
such as classification. We hypothesize this could be because the magnitude of
the weights does not have as much of an effect on the quality of the learned
representations in larger non-linear networks, so the gradient signal does not
necessarily need to point in a direction that contracts weights. We also find that
adding other types of biologically plausible constraints during learning, such as
a sparsification term on layer activations, can lead to a stronger anti-Hebbian
alignment of the gradient.

11
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Figure 5: Best performance of the model is achieved when it is not Hebbian or
anti-Hebbian on average. The left image displays the student validation loss for the
experiment in Figure [4] while the right image shows a scatter plot of the validation
loss vs. Hebbian alignment of the gradient. There seems to be some weak saddle
phenomena in loss that occur at the phase transition boundary of Hebbian alignment
with respect to noise and scale. The validation loss reduces as both weight decay and
noise get smaller. Each cell on the left, and circle on the right, represents a single
seed.

5 Transient phases of Hebbian and Anti-Hebbian
learning

As we mentioned in Section [3| the results are applicable when the dynamics
are not yet fully stationary. While the argument we had suggested that one
would only observe the Hebbian alignment close to convergence, our empirical
results suggest that the alignment is present for much of training. Two key
phenomena we discover are the initial alignment bump and the steady state
Hebbian oscillations. Outside stationarity, the learning signal often dominates
regularization. So it is sufficient to consider the full weight update directly.

Initial Hebbian alignment bump Particularly for networks with ReLU
activations, there is a bump in Hebbian alignment of the learning signal that
appears to be strongly dependent on initialization scale and learning rate at the
beginning of training (Figure@. During this initial phase of alignment, the full
weight update of SGD also increases in alignment to a pure Hebbian update.
This early stage of alignment seems to be the result of general feature learning,
as the actual scale of weight norms does not change substantially at the start of
this period, and with positive weight decays decreases. A higher learning rate
makes this process happen faster.

When we examine the Hebbian alignment of the weight updates for indi-
vidual neurons in the model, a striking pattern appears. During this period,
individual neurons seem to take on Hebbian or anti-Hebbian learning roles that
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Initialization Scale vs. Hebbian Alignment of Weight
Update (mean *= SD, window=200) & Weight-Norm
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Figure 6: For some activations at low learning rates, there is a sharp jump in Hebbian
alignment of the weight update when training with SGD; the size of this jump depends
on initial conditions. During this phase, the weight norm decreases monotonically,
suggesting the effect is due to feature alignment rather than parameter scale. This
experiment used a SCE with n = 0.001. Init: 0.5x, 1x, and 2x indicate the constant
that is used to scale the default torch initialization. The plots above show single
seeds to better demonstrate the evolution over time, but the trend is persistent across
different seeds.

can persist for many steps (see Figure . Like the average behavior of the
model, the length of these phases increases as the weight initialization scale
magnitude and learning rate decrease. The ratio of anti-Hebbian to Hebbian
neurons increases with weight decay.

Hebbian and Anti-Hebbian steady state oscillations There is a phase
change that occurs after the initial coherent phase of learning, which is accom-
panied by a strong shift in the magnitude of the alignment intensity. After this
phase change, individual neurons often, though not always, seem to oscillate be-
tween strongly Hebbian or anti-Hebbian weight updates (F igure. Since near
stationarity, the magnitude of the parameters should not increase or decrease
on average, we also find the mean of the full weight updates to converge to
zero (Figure . Often, we find that models with better generalization exhibit
strong Hebbian/anti-Hebbian oscillations; however, strong oscillations do not
necessarily entail strong generalization.

6 Discussion

This study suggests that Hebbian and anti-Hebbian plasticity can be understood
as emergent regimes of gradient-based optimization rather than fundamentally
distinct learning principles. By analyzing the interaction between stochastic
gradient descent, weight decay, and stochastic perturbations, we demonstrated
that the expected gradient update direction aligns with classic Hebbian plas-
ticity when contraction due to regularization dominates, and switches to an
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anti-Hebbian alignment when expansion driven by noise prevails. The resulting
phase boundary satisfies a simple scaling relation, and the phenomenon was
observed across a broad spectrum of architectures, objectives, and alternative
update rules.

There are a few limitations that provide interesting areas for future research.
We only dealt with smaller models in our experiments. While this decision was
reasonable given the scope of this paper, it leaves open the question of whether
or not we see Hebbian dynamics in much larger-scale models. As mentioned
in the text, as we expanded our models and used different optimizers, we often
saw strong average anti-Hebbian alignment of a subset or all of the layers, even
at high weight decays. This likely results from our stationarity condition not
holding in these models. However, we do not yet have a theory for why and
when these regions of anti-Hebbian alignment occur.

Our results have two primary implications. First, our results show that
Hebbian and anti-Hebbian plasticity can emerge as regimes of gradient-based
optimization, in addition to their conventional role as fundamental learning
mechanisms. Second, the presence of Hebbian or anti-Hebbian signatures in
neuro-physiological data need not be interpreted as evidence against global
error-driven optimization in the brain; such local plasticity patterns may arise
as epiphenomena of an underlying optimization process.

Given that unsupervised adaptation and reinforcement are useful and wide-
spread mechanisms, intrinsically Hebbian homosynaptic plasticity likely does
exist in the brain. However, much of the existing experimental evidence for
Hebbian and anti-Hebbian plasticity is often correlational and phenomenologi-
cal (e.g., see Lamsa et al.| (2007))), so it can be difficult to decide whether the
underlying dynamics are actually Hebbian or are more complicated and only
appear to be Hebbian. Although some evidence has established the importance
of heterosynaptic modulation in memory storage and visual discrimination, its
broader role in learning has remained largely speculative due to the challenges
of studying it both in vivo and in vitro (Bailey et al. [2000; |Chasse et al.| 2021)).
We hope the theory we propose in this paper will serve as a basis for future ex-
perimental studies that will validate or challenge the existence of heterosynaptic
learning principles in the brain.
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A Reproduction

All experiments were run on MIT’s OpenMind cluster using Quadro RTX
6000 GPUs and cumulatively took under 50 hours of compute time.

B LLM Usage

The authors used LLMs to assist in editing the manuscript and writing experi-
mental code.

C Experiments

In the following document, we provide additional figures and explanations that
were referenced in the main text.

C.1 Additional influences on Hebbian alignment and gen-
eralization

C.1.1 Batch size
See Figure[7]

19



Validation Accuracy and
Alignment for Layer 2
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Figure 7: The optimal performance seems to be at a critical position between
Hebbian and anti-Hebbian gradient alignment when varying batch size and
weight decay. This shows the accuracy (left) and the Hebbian alignment of
gradient update (right) for SCEs with a variety of weight decays and batch
sizes. The striped background indicates NaN values.
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Validation Accuracy and Alignment for Layer 2
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Figure 8: The optimal performance seems to be at a critical position between
Hebbian and anti-Hebbian gradient alignment when varying learning weight
and weight decay. This shows the accuracy (left) and the Hebbian alignment of
gradient update (right) for SCEs with a variety of weight decays and learning

rates.
C.1.2 Learning rate
See Figure

C.1.3 Model scale
See Figure [0}
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Where i is the dimension of the input, o is the dimension of the output and ¢ is
the target parameter count.

C.1.4 Model Sparsity
See Figures [10] and [T1]

C.1.5 Frozen Paramaters

See Figure [12]
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Model Size vs Weight Decay: Hebbian Alignment
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Figure 9: This diagram shows the effect of model size on Hebbian alignment
and weight decay. Each point represents the mean of the alignment for the
final 200 steps of the run + the std across 10 seeds. The trend of weight decay
leading to increased Hebbian alignment of the learning signal holds with larger
models as well. The diagram above shows the alignment of the second layer of
the respective MLPs. The MLPs had the following number of total layers: 3, 7,
and 9 for the 1M, 10M, and 50M models, respectively. All hidden dimensions
were assigned to reach the target parameter count as closely as possible. See
equation [19| for how the exact hidden dimensions were computed. The trend is
very robust so a number of the error bars are obscured by the markers.

Sparsity vs Weight Decay: Hebbian Alignment CNN vs MLP: Hebbian Alignment vs Weight Decay
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Figure 10: Empirically, the Hebbian alignment of the learning signal increases
with sparsity (left). We also see that the linear layers in a convolutional neural
network, which are highly sparse, have increased Hebbian alignment. Fach
point represents the mean of the alignment of the second MLP layer for the
final 200 steps of the run + the std across 10 seeds. The models on the left
were the standard MLPs with varying sparsity. The MLP on the right was
a standard MLP and the CNN had the following architecture: Conv Layers:
(Cin = 3,cout = 32,8 = 3,p = 1), (32,64,3,1), (64,128,3,1) MaxPool: (2,2)
Linear hidden dimensions: 2048, 512, 256. The trend is very robust so a number
of the error bars are obscured by the markers.
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Hebbian Learning SGD Alignment
Rolling Window 200 (mean * SD)
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Figure 11: This figure shows an example SCE run with an identical training

and model setup as the convolutional network described in Figure |10| but using
different ResNet models as the backbone instead.

Limited Plasticity vs Weight Decay: Hebbian Alignment
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Figure 12: The alignment decreases as the fraction of parameters of the standard
MLP that are frozen increases; however, the trend still persists. Each point
represents the mean of the alignment for the final 200 steps of the run + the
std across 10 seeds. The trend is very robust so a number of the error bars are
obscured by the markers.
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Hebbian Alignment of Gradient Heatmap
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Figure 13: Again, there is a clear trend that even for the Adam optimizer, as
noise increases, alignment of the learning signal decreases, and as weight decay
increases, so too does alignment. Adam was very sensitive to the parameter
ranges for which we’d see the trend, so we used a different weight decay and
standard deviation range than the prior experiment. However, the rest of the
architecture and experimental setup are identical to that described in Figure E}

Input Noise vs. Weight Decay Alignment
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Figure 14: Additive noise to the input can also lead to anti-Hebbian learning.
Since noise is only added to the input of the network, the exact phase boundary
changes with depth. The results depicted above are from a SRE with input

noise injected.

C.1.6 Training Duration

C.1.7 Noise
See Figure [13] and
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Hebbian Alignment and Loss of Learning Signal
and Full Weight Update During Training
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Figure 15: Comparison of Hebbian alignment for learning signal vs. full weight
update during training (top) and the corresponding validation loss and accuracy
(bottom). The learning signal alignment shows the characteristic patterns de-
scribed in the main text, while the full weight update alignment approaches zero
near stationarity as expected, since the mean of the full update must be zero at
convergence. Individual neuron-wise signals can still oscillate between Hebbian
and anti-Hebbian phases even when the mean full update is zero. Learning Sig-
nal alignment begins and persists far before learning has stopped. The Hebbian
alignment is relatively low given the the low base weight decay used for SCE
but reaches a non-trivial positive alignment long before convergence and while
useful features are still being learned. The above graph is sampled from a single
run to show the evolution over time of the alignment, though this trend is very
consistent.

C.1.8 Full update vs. learning signal

As defined in the terminology section, the learning signal g(z,0) = -V £(+)
represents the gradient contribution to weight updates, while the full weight
update AW = 5(g(x,0) — yW) includes both the learning signal and regular-
ization terms. While we see that the learning signal aligns on average with the
Hebbian update, the full weight update can not, otherwise the weight would
explode. See Figure [15] for a visualization of the alignment of the learning sig-
nal and the full weight update over the course of training. Still, we see a very
interesting trend where the full weight update often has strongly Hebbian or
anti-Hebbian updates that, on average, cancel.
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Hebbian Alignment of Gradient Update vs. Regularizers During Training
(Rolling Window 200, mean * SD)
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Figure 16: Other regularization techniques have a variety of effects on the Heb-
bian alignment of the learning signal. While we only developed a theory for L2
weight decay, the alignment seems to exist for some other regularizers as well
when used to augment SCEs. Batch normalization seems to have a modest but
persistent anti-Hebbian effect, while both L1 and L2 weight decay can have a
Hebbian effect, and Dropout has no effect. While the trends above do seem ro-
bust across other seeds, the plots above show the evolution of single seeds over
time to better visualize the evolution of the alignment throughout training. We
present these qualitative findings for completeness; a deeper analysis of other
regularization techniques is outside the scope of this work.

C.1.9 Other regularization techniques

See Figure

C.2 Example alignments during training

C.2.1 Low alignment update at end of training

See Figure

C.3 Hebbian learning does not lead to gradient alignment
See Figure 1§

C.3.1 Full Weight Update Hebbian Oscillation
See Figures [19] and

C.4 Non-Uniform L2 Weight Decay
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Normalized Weight Update Example Normalized Weight Update Example
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Figure 17: With weight decay, even after the first epoch (left), there starts to
be an alignment of the directions; at convergence (right), even when specific
steps have low cosine similarity, there is still clearly a lot of similar structure.
At the end of training, many learning signals with low Hebbian alignment still
share a surprising amount of structure. The plots above are from a SCE with
7 =0.1 and v = 0.05.

Hebbian Learning SGD Alignment
Rolling Window 200 (mean = SD)
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Figure 18: No standard interpretation of Hebbian learning produces alignment with
SGD at convergence. The plots above show a different learning setup than the stan-
dard SCE; rather than training with SGD and computing the alignment of the learning
signal with a Hebbian update at each update step, instead the model is trained with
various common interpretations of the Hebbian learning objective then this update is
compared to the supervised loss gradient at each step computed with back propaga-
tion. The graph shows the mean SGD alignment of the second layer’s updates, + the
standard deviation over a 200-iteration window, when trained with various versions of
the Hebbian learning rule for two different learning rates. While we found the above
trends to hold robustly across various seeds, each line represents only a single run
smoothed over time to better demonstrate the evolution of the learning rules with re-
spect to time. The Normalized Hebbian learning rule is the generic Hebbian algorithm
with weight standardization after every step. The second algorithm is Oja’s rule. We
also tested the pre-activation and post-activation versions of both. The average align-
ment of every combination approaches zero.

In the main text, we discussed for notational simplicity the case when the
weight decay is uniform across all neurons. The argument can be similarly
and simply extended to the case where different neurons have different rates of
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Figure 19: The full weight update of neurons in the neural network strongly
oscillates between positively and negatively aligned to the Hebbian update late
into training with weight decay (left). As can be seen by the blue and red
stripes, there is some form of global coherent oscillation in alignment at higher
weight decays. This phenomenon becomes much weaker without weight decay
(right). Both diagrams show 30 example neurons from the second hidden layer
of an MLP trained on the standard regression experiment over the course of
training. The diagram on the left has a v = 0.05 while the one on the right has
a gamma of 0.0, both used tanh activations. Our experiments suggest that the
oscillation in alignment for individual neurons is not related to the magnitude of
the weight update that neuron is receiving, though the experiment run without
weight decay does have higher magnitude weight updates since the weights are
larger.
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Figure 20: Early into training neurons often take on roles where their updates
strongly bias towards Hebbian or Anti-Hebbian alignment. The diagram on
the left depicts a SCE with ReLU activations, a 0.5x initialization scaling, a
learning rate of 0.001 and a weight decay of 0.05. The diagram on the right
depicts a similar SCE with ReLLU activations and a learning rate of 0.01, but a
lower weight decay of 0.025 and a default initialization.
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weight decay. We tackle that situation here.

Let W;. denote the i-th row of the weight matrix. Interpreting ¢ as the index
of the neuron, this row can be seen as the synaptic efficacies of the synapses of
this neuron. Here, we will allow every neuron to have a different weight decay.
This is equivalent to the following generalized form of weight decay:

gTr[WTDW], (20)

where D is a diagonal positive-definite (PD) matrix. D;; is exactly the rate of
decay for all the synapses of the i-th neuron. Of course, mathematically, this can
be generalized a little bit further to allow different neurons to have correlated
rates of decay, which could be biologically reasonable if these neurons are close
in location. To achieve this, one simply has to allow D to be a generic PD
matrix, which includes the diagonal case as a special case.

For a generic learning rule g(z,6) given in equation @ the corresponding
learning dynamics is:

AW = g(z,0) - vDW, (21)
where ¢ is the learning rule and 6 is the entirety of all trainable (plastic) pa-
rameters. For clarity, i is subsumed into g and . Close to stationarity, we have
that E;[g(x,0)] ~ yDW.

The direction of alignment at stationarity when E,[g(z,6)] =W is thus
Tr [E.[g(z,0)]Es[hah] ]] = 7 Tr [DWE,[hoh] 1] (22)
=1E[| k5] >0, (23)

where | hy|% = hi Dhy. We are done. Therefore, the theory extends naturally
to the case when there is a nonuniform weight decay rate across neurons.
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C.5 Formal Theory

C.5.1 Setup

We consider a single layer of a network. For each input z, let h,(x) € R™ denote
the (post)activation of the previous layer and let

ho(z; W) = Whe(x) e R™

be the preactivation of the current layer, where W e R™*"e ig the weight matrix
of this layer. We regard h,(z) as fixed and focus on this layer.
Let £(x; W) be the loss on example x and define the penalized expected loss

LW) = B[ W)] + 2 [WIE,  y>0.

For a single example x, define the learning signal at this layer as the negative
gradient with respect to W,

g(z; W) == =V l(x; W) e R Ma,
and the Hebbian update as
H(z;W) = hy(a; W) ho(x)" e R™>Me,

We use the Frobenius inner product (A, B) := Tr(ATB) on matrices.
We study the expected alignment

C(W) i=Eq[ (g(a; W), H(z; W) |-
A matrix W* is called a stationary point if VL(W™) =0, that is,
Eo[Vwl(z; W) +9W* =0 = Eylg(x;W")]=9W".  (24)
Structural and regularity assumptions

We make the following assumptions.

Assumption 1 (Chain rule structure). For each x and W, the loss is differ-
entiable with respect to the preactivation hy, and the gradient with respect to W
obeys the chain rule

Vwl(z; W) = Vp, l(z; W) ha(z)".
Assumption 2 (Norm decoupling). There exists a constant ¢, >0 such that
Hha(x)H2 =c, forallx

almost surely with respect to the data distribution.

30



Assumption [2]is a strong but simple way to encode the idea that the norm of
the presynaptic activity is approximately constant, for example when activations
are normalized.

Assumption 3 (Local boundedness and Lipschitz continuity). There exist r >0
and finite constants Mg, Mg, Lg, Ly such that for all x and all Wi, Wa with
|[Wi = W™ | <r, the following hold:

loCae: W)l < M, |H (a5 W) | < Mar,
loCa: W) - g(as Wa) | < L Wi - Wall oo |H (s W) - H(as Wa)l o < Lig [ Wi - Wal .

Assumption [3]is a local regularity condition on the layer dynamics. In con-
crete architectures, it follows from bounded activations and Lipschitz nonlin-
earities in a neighborhood of W*.

C.5.2 Alignment at stationarity

We first compute C(W) at a stationary point W* and show that it is strictly
positive under the above assumptions.

Lemma 1 (Value of C(W) at stationarity). Let W* be a stationary point of £
with W* 0. Under Assumptions[1] and[3,

CW*) =yeq WG > 0.
Proof. Fix x and W. By Assumption
9@ W) = -Vwl(z; W) = =V, l(z; W) he(z)".

Recall also H(z; W) = hy(x; W) ho(x)", where hy(z; W) = Why(z). Thus at
W* we have

gz, W*) = =V, l(z; W*) ho(x) T, H(z; W) = hy(z; W) ha(x)".
The Frobenius inner product of these matrices is
{g(z; W), H(z;W*)) = Te(g(z; W*) H(x; W*))
= Tr( (= Vi, (2 W) ha()") " B3 W) ha(2)7)
= Tr(=ha(2) Vi, 0(z; W) hy(z; W) he(2)7).

Pulling out the scalar Vy, £(z; W*)T hy(z; W*) and using Tr (hq(z) ha(z)7) =
[ha ()] yields

(9 W), H (W) = = [ha (@) |” Ta, 0 W) by (23 W),
Taking expectations and using Assumption (|ha()]? = cq almost surely) gives

CW*) =Eu[(g(z; W"), H(z; W*)) | = —ca Eo[ Vi, (a; W) hy(z;W*)]. (25)
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We next express the expectation on the right in terms of W*. By Assumption

0

Vwl(z; W*) =V, 0(x; W) he(x)".
The gradient of £ at W™ is

VLW™) =By [V l(z; W) | + AW = Eo [V, €(x; W) ha(z) "] + W™
By stationarity equation this vanishes, hence
Eo[ Vi, (s W) ha(2)T] = W™
Let gp(a; W) := Vi, £(x; W*) and a(z) = hy(x) for brevity. Then
Eo[gs(z; W) a(z)"] = —yW™.
Take the Frobenius inner product of both sides with W*:
(Balgoa™,W*) = (-4 W, W) = [ W 7.
The left side can be rewritten as
(Exlgoa™, W*) = Tr(Ey[goa ]"W™) = Tr(Ey[agy W) = Eq[ Tr(agy, WH)].
Using hy(x; W) = W*a(x),
9o W) Thy (2 W) = go(a; W) "W a(x) = Tr (a(z) go(a; W) TW?),
so that
Ee[g6(x; W) hy(2;W*) ] = Eo[ Tr(agi W) | = (Bx[goa’ ], W™).
We conclude that
B[V, £ W) Thy(a: W*)] = = [W* . (26)
Substituting equation [26] into equation [25] yields
CW*) = o =7 W75 ) =y ca W[5
Since v > 0, ¢, >0, and W* # 0, this is strictly positive. O

Lemma |1 shows that at any nonzero stationary point the learning signal is
positively aligned with the Hebbian update, formally recovering equation

C.5.3 A local bound out-of-stationarity

We now show that this positive alignment persists in a full neighborhood of W*,
and we give an explicit quantitative bound in terms of the distance to W*.
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Lemma 2 (Lipschitz continuity of C (W) near W*). Under Assumption[3, there
exists a constant
LC = LgMH + MgLH

such that for all Wy, Wy with |W; -W*| . <r,

[C(Wy) - C(Ws)|

IN

Lo Wy = Wa|p.

IA

Proof. Fix Wy, Wy with |[W, -W™| 5
g(x; W;) and H;(x) := H(x; W;). Then

r. For each x, abbreviate g;(z) :=

C(W1) = C(W2) = Eu[ (g1 (), Hi(2)) = {92(2), Ha(2)) ]
= Eo[(91() - g2(2), Hi(@)) + (g2(), Hi(z) - Hz(2)) ].

Taking absolute values and applying the Cauchy—Schwarz inequality,

[COV2) = COW)| < Eu 91 (2) = 92 (@) 1H1 ()] + lg2(0)] g | H () = Fa(a) - |

By Assumption [3]

lgi(z) = g2(@) || p < Lg [W1 - Wa| g, |H1(x) = Ha(2)| o < L [W1 - Wa g,
and

lg2(2)| - < My, [H1(2)| g < Mp.
Hence

[CW1) = COWo)| < Bu[ Ly [Wr = Wal o Mg + My Ly |Wr = Wa - |
=(LgMpy + MyLy) |W1 - Wa|p.
This proves the claim. O
Combining Lemmal [l with Lemma[2) gives the desired near-stationary bound.

Theorem 1 (Hebbian alignment in a neighborhood of stationarity). Let W*
be a stationary point of L with W* # 0. Assume Assumptions[1}, [3, and[3 Set

C=C(W*) =5ca W[ >0, Lo = LyMy + MLy,

Then for every W such that |[W -W* | <r,

CW) > C.-Le |W-W*|p. (27)
In particular, if
C,
W-W'p £ —
” ”F 2LC’
then o
c(wW) > 7* > 0.
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Proof. The inequality equation [27|follows directly from Lemma [2| with W7 = W,
Wy =W™:

IC(W)-C.|=|C(W)-C(W")|<Le |[W-W7|p.
Rearranging yields
CW)>C,—Le |W-W"| .
If |[W-W?*||z<C./(2L¢), then

C. :g>0.

O

Theorem [I] states that once the weights enter a neighborhood of a nonzero
stationary point, the expected alignment between the learning signal and the
Hebbian update is bounded away from zero and remains strictly positive, with a
margin that decreases at most linearly with the distance from W*. This already
implies that if the learning update is upper bounded by v, then for at least

T =

- (28)
v
duration of time, the learning dynamics must have a positive Hebbian alignment.
Of course, in reality, the closer one gets to the stationary point, the slower the
dynamics becomes, and so the time in reality could be infinitely long (as in a
linear dynamics, where the dynamical variable only reaches the stationary point
at the infinite-time limit).

It could also be desirable to directly link this distance to the dynamics, which
we achieve in the next section.

C.5.4 A bound in terms of the stationarity gap

As an alternative perspective, it could be desirable to express the proximity
to W* not by |[W —W*|, but by the size of the drift of the continuous-time
gradient flow.

Define the drift field

F(W) :=Ey[g(a;W)] =4W = B[ Vi b(z; W)] =AW
Then the gradient flow associated with L is given by
W(t) = F(W(1)).

The stationary points of £ are the zeros of F'; in particular F(W*) = 0.
We now assume that F' is differentiable and that W* is a nondegenerate zero
of F, meaning that the Jacobian DF(W™) is invertible. Invertibility implies a
quantitative relation between the distance to W* and the magnitude of F(W).
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Assumption 4 (Nondegenerate stationary point). The mapping F is contin-
wously differentiable in a neighborhood of W*, and the Jacobian DF(W™) is
invertible. Denote by omin > 0 the smallest singular value of DF(W™).

Lemma 3 (Control of distance by vector field). Under Assumption |4}, there
exist ro >0 and p >0 such that for all W with |W - W™ |, <ro,

[EW)e 2w W =W
In particular one may take p = omin/2 for ro small enough.

Proof. By the mean value formula in Banach spaces,
FOW) - F(W*) = /01 DF(W* + (W = W*)) (W - W*) dt.
Since F(W™*) =0, we have
F(W) = folDF(W* FHW = W)) (W = W) dt.

Fix € € (0,1). By continuity of DF and invertibility of DF(W™), there exists

ro > 0 such that for all W with |W - W*| <r¢ and all ¢ € [0,1], the smallest

singular value of DF (W* +t(W -W™)) is at least (1-¢)omin. In particular, the

operator norm of the inverse of each such Jacobian is at most [(1 - 5)Jmin]’1.
For any v,

|DE(W* +t(W =W*))v|| . 2 (1 -&)omin [v] 5.
Applying this with v = W — W* and using Minkowski’s inequality gives
POV = | [T DR = tw =) v -y
> [01 | DE(W* 1 (W W) (W - W), dt
> f01(1 — &) Omin | W = W dt
= (1-&)omin [W-W7p.

Choosing ¢ = 1/2 and setting p = omin/2 yields the stated inequality. O

We can now express the Hebbian alignment bound in terms of the station-
arity gap |[F(W)] .

Theorem 2 (Hebbian bound in terms of stationarity gap). Assume the hy-
potheses of Theorem[] and Assumption[ Let >0 and ro >0 be as in Lemma
[3 Then there exists r' >0 such that for all W with [W = W*| 5 <7/,

W) = C, %‘ IFV) . (20)
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In particular, if
pCy

2Lc’

[EW)e <

then C(W) > C, /2> 0.

Proof. Let r' := min{r,ro}, where r is from Assumption |3| and 7o from Lemma
For any W with |[W - W* | <r’, Theorem (1] gives

C(W) > Co~ Lo |W - W5

By Lemma we have |W - W* | <y |F(W)| , hence
1
cw) = C*‘LC;”F(W)HFv

which is equation If in addition |F(W)|p < pC./(2L¢), then

1#0*_%

— = > 0.
“L2Le 2

C(W) > C,—L

O

Theorem [2| formalizes the intuitive statement that once the expected update
field F(W) is small, the learning signal remains strongly Hebbian. In particular,
as W approaches a nondegenerate stationary point of the penalized loss, the
expected alignment between g(x; W) and H(xz; W) stays bounded away from
zero, with a deficit that scales at most linearly in the norm of the stationarity
gap | E(W)] .

C.6 RandomNN formulation

The RandomNN was a MLP with 3 hidden vectors of size 128 and tanh
activations. The MLP took the same input as the student model but outputted
a vector of length 4. The output was averaged across the batch and then mul-
tiplied by a random projection matrix unique to each parameter and reshaped
to be the dimensions of that parameter. No parameters of RandomNN change
after initialization. The resulting learning signal for W is a deterministically
random low-rank matrix, W*.

The full weight update is given by:

AW =n(g(z,0) -yW)

where
9(x,0) = p(W*)sdir(W)spea(W, W )W*

and where,

sred(W, W) = sign ([Wz = [W - W7|2)

36



sair (W) = sign (100 - [W]2)

. 1 if [W¥2<1
p(W ):{ 1

W otherwise

The minimal requirements to have non-zero weights and reach stationarity
require g(z, #) to be some forcing function that wants to make the weights larger
than zero. This is the case with any descent learning algorithm, as with zero
weights, one can not learn or express anything besides 0. However, it is not only
true of learning algorithms.

There are a number of trivial constructions that satisfy this condition, such
as setting f(x,0) = A where A is a random matrix defined at initialization. This
will naturally be an expanding force and become aligned with the Hebbian rule;
however, it will do this even without regularization. But is there a way to make a
non-learning model that does not behave Hebbian at all without regularization,
but does with regularization?

RandomNN is one such construction. In it, we produce random weight
update vectors in a subspace of the possible directions of the student model’s
weight updates. This means that after some number of updates, the value of
the weight is not orthogonal to the random update vectors, and in fact becomes
highly aligned to them. Thus, for a given weight update, the norm of the weights
will either increase or decrease, not strictly increase. We can make an attractor
to push the norm of the weights to a specific non-zero value by choosing to either
add or subtract the random update, depending on which one will move it closer
to the target value. Thus, without any regularization, the model’s weights will
converge to have the target norm and will, on average, not increase or decrease,
resulting in no Hebbian alignment. However, once a weight decay term is added,
the attractor will try to strictly increase to approach the target, and thus align
with the Hebbian update. We also apply a weight update norm clip for stability.
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