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Abstract
The Diligent Learner framework suggests LLMs can achieve superintel-

ligence via test-time search, provided a sufficient step-success probability
γ. In this work, we design a benchmark to measure γ on logical out-
of-distribution inference. We construct a class of tasks involving GF(2)
circuit reconstruction that grow more difficult with each reasoning step,
and that are, from an information-theoretic standpoint, impossible to
reliably solve unless the LLM carefully integrates all of the information
provided. Our analysis demonstrates that while the γ value for small LLMs
declines superlinearly as depth increases, frontier models exhibit partial
robustness on this task. Furthermore, we find that successful reasoning
at scale is contingent upon precise tool calls, identifying tool design as a
critical capability for LLMs to achieve general superintelligence through
the Diligent Learner framework.

1 Introduction
The recent emergence of large-scale LLMs has made multi-step reasoning in-
creasingly practical Wei et al. [2022], Wang et al. [2022], Fu et al. [2023], Kojima
et al. [2022], especially when combined with inference-time search, tool use, and
verification. Much of this progress has been enabled by post-training, including
reinforcement learning and preference-optimization methods Ouyang et al. [2022],
Shao et al. [2024]. Recent work on the Diligent Learner, suggests search through
reasoning steps on problems of bounded depth could lead to “superintelgent”
agents with our existing architectures [Shalev-Shwartz and Shashua, 2025b].

The viability of this framework hinges on a critical quantity: the stepwise
success probability, denoted by γ. The central premise of Diligent Learning is
that test-time search can scale effectively only if the model’s proposal distribution
preserves a non-vanishing probability of generating the correct subsequent step.
However, a central question remains unresolved; as reasoning unfolds over
longer horizons on tasks does the stepwise success probability γ always remain
larger than a positive constant, or are there categories of problems for which it
catastrophically degrades with depth?

If a successful reasoning chain requires knowledge that the LLM has never
been exposed to, then the answer is trivial. However, when it comes to the
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problem of general superintelligence, the important question is whether or not
the model can solve out of distribution problems while reasoning about prior
learned relationships. In this work, we design a benchmark to measure exactly
this quality.

While plenty of benchmarks exist for studying the reasoning capabilities
of different models, existing evaluations are inadequate for this goal. Many
benchmarks score only final answers, allow multiple valid intermediate paths, or
permit shortcuts where performance comes from pattern-matching labeled data
or memorizing prior examples. Thus, “stepwise reasoning” is confounded with
exploiting benchmark-specific regularities and pre-trained knowledge.

To rigorously test the Diligent Learner hypothesis, we introduce a benchmark
that is adversarial to such shortcuts. We design a form of Boolean circuit
reconstruction from data over GF(2). The model must predict successive terms
in an Algebraic Normal Form (ANF) of the circuit. Each step g in the reasoning
chain has a unique correct continuation. To find it, the model must combine two
distinct inputs: (i) The Prefix: The history of the circuit revealed so far and (ii)
The Evidence: A new batch of step-specific data.

To ensure that the model cannot cheat, we employ an adversarial sampling
oracle. This oracle generates evidence that appears statistically random unless
the solver conditions it on the prefix. Consequently, strategies that rely solely
on pattern-matching of the data or memorizing of the history will fail. Only a
diligent solver that integrates both sources can recover the next term.

We provide the models with a perfect oracle that prevents them from going
down incorrect reasoning paths. This structure allows us to find an empirical
upper-bound for γg and measure the affect of problem complexity and reasoning
depth without need to fine-tune the model learn how to handle back-tracking.

When we apply this metric to current systems, we find that in smaller models,
γg collapses as the reasoning depth increases. Frontier models, however, sustain
a high γg over long horizons when using tool calls.

2 Related Work
Reasoning as search with verification. A long line of work treats reasoning
as a search problem where a model proposes candidate steps or solutions and
an evaluation signal filters them; in LLMs, this appears in chain-of-thought
prompting [Wei et al., 2022, Wang et al., 2022], Tree-of-Thought search over
partial reasoning states [Yao et al., 2023], and iterative propose–critique–revise
agentic loops such as Reflexion [Shinn et al., 2023]. These approaches are often
augmented with tool use [Schick et al., 2023, Hao et al., 2023, Parisi et al.,
2022, Shi et al., 2025] and explicit scratchpads [Nye et al., 2021] to maintain
intermediate state and enable efficiently checkable substeps. On the theory
side, chain-of-thought can be formalized as a task decomposition that makes
otherwise hard concept classes learnable in a PAC-style setting [Yang et al.,
2025a, Joshi et al., 2025], and next-token predictors can be viewed as general-
purpose learners under suitable conditions [Malach, 2024]. Closely related, the
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Figure 1: Diligent learner visualization from [Shalev-Shwartz and Shashua,
2025a].

LLM-ERM framework makes the propose-and-verify view explicit by treating
the LLM as proposing hypotheses and a verifier as enforcing correctness [Singhal
et al., 2025].

The Diligent Learner. Motivated by this broader view of reasoning as
search guided by evaluation, a recent paper [Shalev-Shwartz and Shashua, 2025b]
introduced the Diligent Learner framework in order to formalize the process
as validator-guided depth-first search with an explicit backtrack action. Its
analysis isolates a single bottleneck, the per-step success probability γ, defined
as the probability mass the policy assigns to “good” next steps that keep the
current prefix completable. If γ does not collapse with depth and backtracking
returns to the deepest correct prefix with high probability, search succeeds with
controlled overhead [Shalev-Shwartz and Shashua, 2025b]. Our work targets
the empirical gap left open by this theory: γ is defined abstractly, but there
is no standard benchmark in which (i) the correct extension is unique at each
step and (ii) shortcuts that ignore either the accumulated history or the fresh
evidence are information-theoretically ineffective. We design such a benchmark
so that γg is directly measurable as exact-next accuracy at depth g.

Benchmarks for testing reasoning in LLMs. Reasoning in LLMs is
commonly evaluated via static, single-shot benchmarks spanning mathematical
and logical problem solving, including grade-school word problems and multi-step

3



h0
(problem)

h1

h2

h3

h2 ⊕ a′

fail
backtrack

done
candidate

Validator V
accepts?

V = 1
(golden)

extend

a ∈ G(h), w.p. ≥ γ

extend

extend

extend

β(h) = 1

done

Figure 2: Diligent Learner as validator-guided DFS. Good extensions
occur with probability at least γ. On failure, the policy backtracks to the deepest
correct prefix β(h) and continues search.
arithmetic [Cobbe et al., 2021], competition-style mathematics [Hendrycks et al.,
2021], and curated hard subsets of broad capability suites [Suzgun et al., 2022].
A complementary line of work uses synthetic or controlled-distribution tasks to
probe compositional generalization and algorithmic structure, such as formal
mathematical expression generation [Frieder et al., 2025] and software engineering
benchmarks [Jimenez et al., 2024, Yang et al., 2025b]. Finally, interactive
evaluations target agentic reasoning with tools and environments, where success
depends on multi-step planning and external actions (e.g., embodied or text-
based worlds, or web interaction) [Shridhar et al., 2021, Zhou et al., 2024, Qin
et al., 2024, Liu et al., 2025].

While these benchmarks are valuable for measuring end-to-end task per-
formance, they typically (i) score only the final answer, (ii) admit many valid
intermediate trajectories, and (iii) do not isolate whether success comes from
the evolving history, the current evidence, or dataset-specific shortcuts. In
contrast, our goal is to operationalize the Diligent Learner’s per-step parameter
γ in a setting where each depth g has a unique correct extension and where
solvers that ignore either the revealed prefix or the fresh step-specific samples
are information-theoretically ineffective. The stepwise GF(2) reconstruction
benchmark we introduce is designed to meet these requirements, enabling direct
measurement of γg as exact-next accuracy with a polynomial-time validator.

3 Background
3.1 The Diligent Learner
Reasoning as a search tree with validation. The Diligent Learner formal-
izes reasoning as building a rooted search tree whose root encodes the problem
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instance, and whose nodes represent semantic reasoning states (partial chains).
A root-to-leaf path corresponds to a proposed chain-of-thought (CoT). Leaves
have two special types: done (a completed solution) and backtrack (indicating
a jump to an earlier node). A validator V checks a proposed step could logically
follow from a prior one; a golden path is a root-to-done path accepted by V (see
Figure 1).

Generator policy and step-success probability. Let V be a validator
on the proposed next step. Let πθ(· | h, V ) be a stochastic policy over valid
actions given a partial reasoning state h (a prefix of a path). An extension action
a proposes the next semantic step and S is a function that returns true if there
exists a path to the conclusion of a reasoning problem given the prefix (h, a).

Pr
a∼πθ(·|h)

[a ∈ {∀ai.S(h, ai) = 1}] ≥ γ. (1)

Intuitively, γ is the probability mass assigned to useful next moves that keep
the trace completable.

Learned backtracking. The original diligent learner allows the model to
make incorrect extensions so long as it is able to realize and revert via depth-first-
search. However, in this paper we assume a very strong validator that prevents
the model from going down incorrect paths so we never need to fine-tune the
model to learn how to back-track.

The implications of γ. If the policy keeps a nontrivial chance γ of
proposing a good next step and can backtrack to the last correct prefix, then
depth-first search reaches a validator-accepted leaf with high probability without
exponential blowup. Concretely, for a target failure probability δ and maximum
depth Tmax, the analysis sets

O

(
Tmax · log(Tmax/δ)

γ

)
(2)

which is polynomial in Tmax for constant γ [Shalev-Shwartz and Shashua,
2025b]. Thus, the central requirement is that γ not decay with depth; otherwise
the search budget grows rapidly and the guarantee becomes vacuous.

4 Theory
The “Diligent Learner” hypothesis posits that a reasoning model can solve long
multi-step problems by performing test-time search, as long as it maintains a
non-vanishing probability γ of proposing a good next semantic step at every depth
[Shalev-Shwartz and Shashua, 2025b]. We introduce a stepwise reconstruction
benchmark to evaluate the limitations of this framework in which, at each step
g, the model must extend a revealed partial solution (the current prefix) using
a new batch of evidence specific to that step. The construction is designed
to eliminate two shortcut strategies: (i) data-only prediction that ignores the
prefix and tries to infer the next step from examples alone, and (ii) history-only
prediction that ignores the new evidence and extrapolates from the prefix alone.
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4.1 Problem formulation
We instantiate this in the reconstruction of Boolean functions over GF(2) under
a fixed-prefix statistical obfuscation sampling oracle.

Targets in ANF over GF(2). Let x = (a, v) ∈ {0, 1}n+p where a =
(a1, . . . , an) ∈ {0, 1}n are address bits and v = (v1, . . . , vp) ∈ {0, 1}p are payload
bits. We consider Boolean targets represented in Algebraic Normal Form (ANF)
as XORs of monomials f(a, v) =

⊕n
j=1 tj(a, v), where

tj(a, v) := aj Mj(v), Mj(v) :=
∏

i∈Sj

vi, (3)

such that each support Sj ⊆ [p] has fixed size |Sj | = d − 1. Thus each term has
payload-degree d−1 and total degree d in (a, v). An instance is specified by the
ordered sequence of supports (S1, . . . , Sn) (equivalently, the ordered ANF terms
(t1, . . . , tn)), sampled once and then fixed.

Stepwise reconstruction game and step-success. At step g ∈ {0, . . . , n−
1} the learner is given (i) the ordered prefix Pg := (t1, . . . , tg) and (ii) a fresh
labeled sample set Sg := {(x(k), y(k))}K

k=1 generated by the step-g oracle. The
learner outputs a candidate monomial t̂ and succeeds iff t̂ = tg+1. We define the
benchmark step-success probability:

γg := Pr
t̂∼πθ(·|Pg,Sg)

[
t̂ = tg+1

]
, (4)

where the probability is over instance generation, oracle sampling, and model
stochasticity. Because the instance commits to an ordered sequence, at depth g
there is a unique correct extension tg+1, so γg directly operationalizes step-success
in our benchmark.

Estimator classes. We distinguish solvers by their information access:
(i) Diligent Estimator (Ag): access to (Pg, Sg); (ii) Data-only Estimator
(Bg): access to Sg but not Pg; (iii) History-only Estimator (Cg): access to Pg

but not Sg; (iv) Partial Estimator (Dg): partial access to Pg and Sg. Let γX
g

denote the exact-next success probability for class X at step g. Our benchmark
is designed to enforce a separation of the form

min
g

γA
g ≥ Q while γB

g , γC
g , γD

g ≈ 1
( p

d−1)
. (5)

for a nontrivial constant 1 ≥ Q ≫ 0.

4.2 The statistical obfuscation construction
We now define the distribution over benchmark instances and the step-g sam-
pling oracle. At step g, the label is the XOR of the unknown next payload
monomial Mg+1(v) and a randomized mask computable from the revealed prefix.
Consequently, the labeled samples carry essentially no information about Mg+1
unless the solver uses the prefix to cancel the mask.

Instance generation. Sample supports S1, . . . , Sn ⊆ [p] with |Sj | = d − 1
once per instance (for example, i.i.d. uniform over {S ⊆ [p] : |S| = d − 1},
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or without replacement). The resulting instance fixes the ordered ANF terms
(t1, . . . , tn) in (3).

Payload distribution (fixed weight). Fix a Hamming weight w and
sample payloads uniformly from the sphere {v ∈ {0, 1}p : ∥v∥0 = w}. For any
fixed S with |S| = d − 1, define

ρ(w) := Pr
v

[
MS(v) = 1

]
=

(
w

d−1
)(

p
d−1

) (w ≥ d − 1), (6)

and choose w⋆ to make ρ(w) as close to 1/2 as possible (so monomial evaluations
are nearly balanced).

Step-g sampling oracle (fixed-prefix obfuscation). Given an instance
and depth g ∈ {0, . . . , n − 1}, the oracle returns Sg = {(a(k), v(k), y(k))}K

k=1 by
sampling i.i.d. examples as follows: (i) Set ag+1 = 1 and set aj = 0 for all
j > g + 1; (ii) Sample a1, . . . , ag

i.i.d.∼ Bernoulli(1/2); (iii) Sample v uniformly
from {v : ∥v∥0 = w⋆}; (iv) Output y := f(a, v). Under this oracle,

y =
( g⊕

j=1
aj Mj(v)

)
︸ ︷︷ ︸
prefix obfuscation

⊕ Mg+1(v)︸ ︷︷ ︸
next-term signal

, (7)

since ag+1 = 1 and aj = 0 for all j > g + 1. The obfuscation prefix is computable
from (Pg, x), but without Pg it behaves like a high-entropy statistical obfuscator
that statistically obfuscates the signal.

4.3 Theoretical guarantees
We formalize two properties: (i) per-sample obfuscation, meaning that after
marginalizing over the unknown prefix supports, each labeled example provides
at most exponentially small Bayes advantage about the next-term signal to a
solver that does not condition on the revealed prefix, and (ii) recoverability,
meaning that a solver with access to the revealed prefix can cancel the mask and
recover the next term in polynomial time from a fresh batch of samples.

Monomial firing at fixed weight. Because we draw payloads uniformly
from a fixed Hamming sphere, the probability that a degree-(d − 1) payload
monomial evaluates to 1 depends only on (p, w, d) and admits a simple closed
form. This lets us choose w⋆ so that monomial evaluations are approximately
balanced in expectation, which in turn makes the obfuscation effect high-entropy
and prevents trivial leakage from biased labels.

Lemma 4.1 (Monomial firing probability at fixed Hamming weight). Fix
integers p ≥ d − 1 ≥ 1 and w ∈ {0, . . . , p}. Let v be uniform over the Hamming
sphere {v ∈ {0, 1}p : ∥v∥0 = w}, and fix any S ⊆ [p] with |S| = d − 1. Define
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MS(v) :=
∏

i∈S vi. Then

Pr
[
MS(v) = 1

]
=


(

w
d−1

)(
p

d−1
) =

(
p−(d−1)
w−(d−1)

)(
p
w

) if w ≥ d − 1,

0 if w < d − 1.

Per-sample obfuscation and shortcut resistance. A data-only esti-
mator Bg observes sample triples (a(k), v(k), y(k)) but not the revealed prefix
Pg, and thus does not know the hidden prefix supports (S1, . . . , Sg) that define
the mask term. We do not claim a full information-theoretic impossibility for
data-only solvers with K samples, since the same hidden supports are reused
across all samples at a given step. Instead, we formalize a per-sample masking
guarantee: after marginalizing over the unknown prefix supports, each labeled
example has exponentially small Bayes advantage about the next-term signal
unless one conditions on the prefix. Consequently, beating chance from data
alone requires exploiting multi-sample structure to jointly infer hidden supports,
which is empirically ineffective for our shortcut baselines at the benchmark
sample sizes.

For a single example (a, v, y) at step g, define the signal bit b := Mg+1(v)
and the (unknown-to-Bg) mask bit

B(a, v) :=
g⊕

j=1
aj Mj(v) =

g⊕
j=1

aj 1{Sj ⊆ supp(v)}.

Let m(a) :=
∑g

j=1 aj be the number of active prefix address bits in the example.

Lemma 4.2 (Bayes masking given observed (a, v)). Assume the instance dis-
tribution samples S1, . . . , Sg, Sg+1 i.i.d. uniformly from {S ⊆ [p] : |S| = d − 1},
independently of the oracle samples. Fix a step g and condition on a realized
example (a, v) with ∥v∥0 = w⋆. Let

ρ := ρ(w⋆) = Pr
S

[
MS(v) = 1

]
=

(
w⋆

d−1
)(

p
d−1

) , m := m(a).

Then, marginalizing over the unknown prefix supports (S1, . . . , Sg), for each
r ∈ {0, 1},

Pr
[
B(a, v) = r | a, v

]
= 1

2
[
1 + (−1)r(1 − 2ρ)m

]
.

Moreover, B(a, v) is independent of b = Mg+1(v) given (a, v), and since y =
B(a, v) ⊕ b we have ∣∣Pr[y = b | a, v] − 1

2
∣∣ = 1

2 |1 − 2ρ|m.

Lem. 4.2 quantifies single-sample leakage. After averaging over the unknown
prefix supports (S1, . . . , Sg), each label can be written as y = b ⊕ B(a, v), where
b := Mg+1(v), such that the mask B(a, v) is independent of b given (a, v). Hence,
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conditioned on the observed (a, v), the best possible data-only predictor for b
has advantage∣∣∣ Pr[y = b | a, v] − 1

2

∣∣∣ = 1
2 |1 − 2ρ|m(a), m(a) :=

∑
j≤g

aj ,

so the leakage decreases exponentially in the number of active prefix bits.
Under the oracle, a1, . . . , ag

i.i.d.∼ Bernoulli(1/2), so m(a) ∼ Bin(g, 1/2) and
a typical example has m(a) ≈ g/2. Therefore, when ρ is chosen close to 1/2, a
typical sample provides essentially no information about b without using the
revealed prefix. In the ideal balanced case ρ(w⋆) = 1/2, we have |1 − 2ρ| = 0, so
the bias is exactly 0 whenever m(a) ≥ 1: the label is then a perfect one-time pad
for b. The only trivial leakage is the rare event m(a) = 0 (no active prefix bit), in
which case B(a, v) = 0 and y = b. Since Pr[m(a) = 0] = 2−g, the probability of
seeing at least one such leakage example in K samples is 1 − (1 − 2−g)K ≈ K2−g

when 2−g is small. In our benchmark we simply reject and resample until
m(a) ≥ 1 to remove this degenerate case.

History-only baseline. A second shortcut is to ignore the step-specific evi-
dence Sg and predict the next term using only the revealed prefix Pg = (t1, . . . , tg).
In our construction, the prefix reveals exactly the previously sampled payload
supports (S1, . . . , Sg) (and their order), but under the instance distribution it
carries no information about the next support Sg+1. Concretely, when supports
are sampled i.i.d. uniformly with replacement from {S ⊆ [p] : |S| = d − 1},
we have Sg+1 ⊥ Pg, so the conditional law of Sg+1 given Pg remains uniform.
Therefore any history-only strategy can do no better than prior guessing among
the

(
p

d−1
)

possible payload supports. The next lemma formalizes this and pins
down the corresponding baseline success rate.

Lemma 4.3 (History-only is prior guessing). Assume the instance distribution
samples supports S1, . . . , Sn i.i.d. uniformly (with replacement) from {S ⊆ [p] :
|S| = d − 1}. Then for any g < n, conditioned on the revealed prefix Pg, the
next support Sg+1 is uniform over {S ⊆ [p] : |S| = d − 1} and independent of
Pg. Consequently, any history-only estimator satisfies Pr[Ŝ = Sg+1] ≤ 1

( p
d−1)

.

Recoverability in polynomial time for diligent solvers. See Appendix
C.

5 The Benchmark
We implement the theoretical construction in Sec. 4 as a procedurally generated
dataset and evaluation pipeline that tests an LLM’s reasoning horizon: how far
it can reliably extend an evolving partial solution when the next step is hidden
from either the data alone or the history alone.
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5.1 Data generation: the adversarial oracle
Our generator acts as an adversarial oracle: it produces examples whose labels
are information-theoretically uninformative unless the solver conditions on the
revealed prefix, exactly (Sec. 4.2).

Each instance is parameterized by the total number of variables N = n + p,
the number of steps (address bits) n, and the payload degree d − 1. We use d for
the total degree of each ANF term, so each term contains exactly one address
variable and d − 1 payload variables.

Instance synthesis. We sample an ordered sequence of payload supports
S1, . . . , Sn ⊆ [p] with |Sj | = d−1 and define the ANF terms tj(a, v) = aj

∏
i∈Sj

vi.
This fixes the ground-truth target f(a, v) =

⊕n
j=1 tj(a, v) and the unique stepwise

curriculum {t1, . . . , tn} for the instance.
Curriculum at step g. We evaluate the model over steps g = 0, 1, . . . , n−1.

At step g, the model is given the explicit algebraic prefix Pg = (t1, . . . , tg) and
must predict the unique next term tg+1.

Observation synthesis (fixed-prefix obfuscation sampling). For each
step g, we generate a fresh labeled set Sg = {(x(k), y(k))}K

k=1 using the oracle
in Sec. 4.2: we set ag+1 = 1, set all future address bits aj = 0 for j > g + 1,
sample prefix address bits a1, . . . , ag

i.i.d.∼ Bernoulli(1/2), and sample payloads
v uniformly from the Hamming sphere {v : ∥v∥0 = w⋆}. We choose w⋆ so that
the monomial firing probability ρ(w) =

(
w

d−1
)
/
(

p
d−1

)
is close to 1/2, making

monomial evaluations nearly balanced.
Ensuring the step is decodable (no accidental degeneracy). To

avoid trivial failures due to degenerate sampling (e.g., too few positive residuals
or insufficiently informative payloads), we optionally reject and resample Sg

until it satisfies simple decodability checks aligned with our decoder in Sec. 4.3
(e.g., |K+| ≥ 1 and the intersection-based recovery does not collapse to an
empty/ambiguous set). This guarantees that a valid reasoning path exists for
the step, while the labels remain obfuscated for solvers that ignore the prefix.

5.2 Interaction Protocol
We frame each instance as an iterative completion game. At step g, the model
receives a prompt containing: (i) Global metadata: the total number of
variables and the target degree (or degree bound); (ii) Partial solution (Pg):
the current ANF prefix, written as an XOR of monomials (e.g., x0*x5 + x1*x2);
(iii) Observations (Sg): a list of K=64 labeled examples, each formatted as a
full assignment to (x0, . . . , xN−1) together with the binary output.

The model must output exactly one new monomial (e.g., x3*x7). We parse
and validate it as a single well-formed monomial over the available variables,
and score it correct iff it matches the ground-truth next term tg+1.

Internally, the generator distinguishes address and payload variables (Sec. 4.2).
However, the prompt presents a flat list {x0, . . . , xN−1} to avoid hand-coded
cues and to test whether the model can infer and exploit the latent structure
from the prefix and examples alone.
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Figure 3: Only history+data sustains reliable next-step prediction. Step success γg

(probability mass on the correct next monomial) versus depth g for each estimator class.
Curves show the mean over 2000 generated circuits per depth, with shaded Jeffreys
intervals. The diligent estimator A (history+data) maintains high γg across depths,
whereas B (data-only) and D (partial) frequently collapse toward zero mass, and C
(history-only) remains at chance.

5.3 Validator and Evaluation
Although the learner faces the hard problem of inferring the next monomial from
data, validation is cheap. By construction, the monomial is barely identifiable
and tail terms are disabled, so the only valid next term any algorithm could
infer from the observed data is exactly the one we removed. Thus, validation is
a constant-time check. This is a key advantage of our setup: in general circuit
synthesis, verifying whether a proposed intermediate step can still lead to a
correct final solution can require super-exponential time.

Within the Diligent Learner framework, γ lower-bounds the probability of
choosing a correct next step, and task difficulty grows with depth. We estimate
γ by computing the average step success γg at each depth (using depths that
are powers of two) and then taking the minimum over depths. This quantifies a
model’s reasoning by identifying the depth where performance collapses and, by
comparing to variants of estimator D, infers the average fraction of the prefix
the model can reliably reason about.

6 Results
We evaluated the four estimators described in Sec. 3.1, small LLMs, and frontier
models to analyze empirically how gamma changes with depth.
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Figure 4: As both g and p increase, the probability of an estimator with imperfect
information begins to collapse to zero. Only Estimator A is able to consistently
produce the next monomial. The above heatmap was constructed through generating
200 circuits for each combination of hyperparameters and computing the corresponding
γg for each p.

6.1 Estimator Simulations
We evaluated small LLMs to test whether they exhibit the same depth-induced
degradation in next-step prediction as estimator D. As shown in Figure 5, all
models display a systematic decline in γg with depth, even though an explicit
polynomial-time decoder exists at every step (Thm. C.1). Larger models and
“thinking” variants perform better at shallow depths, but depth sensitivity
persists.

We consider four models from the Qwen3-2507 family: 4B-Instruct, 4B-Thinking,
30B-A3B-Thinking, and 30B-A3B-Instruct [Team, 2025]. We run inference in
vLLM on 3000 generated instances, evenly split across g ∈ {1, 3, 7, 15, 31}, using
adversarial sampling with p = 12 and d = 4 [Kwon et al., 2023]. 4B-Instruct
does not achieve performance statistically distinguishable from random guessing
even at the easiest setting, so we omit it for readability. Qwen3-30B-A3B-Thinking
has a clear advantage at small depths over its instruct variant, but still drops
sharply at intermediate depths (around g=15 here) and approaches the trivial
baseline γtriv.

6.2 Small LLMs
We evaluated small LLMs to test whether they exhibit the same depth-

induced degradation in next-step prediction as estimator D. As shown in
Figure 5, all models display a systematic decline in γg with depth, qualitatively
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Figure 5: Small LLMs exhibit depth-induced collapse in next-step prediction. Step-
success γg (probability mass on the correct next monomial) versus circuit depth g
for Qwen3-2507 models under adversarial sampling (p = 12, d = 4). Despite the
existence of a polynomial-time decoder at every step (Thm. C.1), all models degrade
with depth: larger and “thinking” variants help at small g, but performance drops
sharply at intermediate depths and approaches the trivial baseline γtriv, indicating
limited ability to maintain the prefix-conditioned cancellation required for continued
progress.
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mirroring the collapse seen for partial-information estimators, even though an
explicit polynomial-time decoder exists at every step (Thm. C.1). Larger models
and “thinking” variants perform better at shallow depths, but depth sensitivity
persists.

We consider four models from the Qwen3-2507 family: 4B-Instruct, 4B-Thinking,
30B-A3B-Thinking, and 30B-A3B-Instruct. We run inference in vLLM on 3000
generated instances, evenly split across g ∈ {1, 3, 7, 15, 31}, using adversarial
sampling with p = 12 and d = 4. This task requires long contexts for consistent de-
coding (max context length 32,768 for 4B and 81,920 for 30B). 4B-Instruct does
not achieve performance statistically distinguishable from random guessing even
at the easiest setting, so we omit it for readability. Qwen3-30B-A3B-Thinking
has a clear advantage at small depths over its instruct variant, but still drops
sharply at intermediate depths (around g=15 here) and approaches the trivial
baseline γtriv.

Effective-prefix analysis (linking to partial-information estimators).
To connect these empirical trends to the “partial access” thread (Sec. 4.1), we fit
each model’s accuracy curve to an effective-prefix abstraction: performance at
depth g is modeled as if the solver only uses k of the g revealed terms, with either
proportional scaling k = ug or constant capacity k = v. Table 1 shows strong
evidence that Qwen3-30B-A3B-Thinking behaves like it uses a constant fraction
of the revealed prefix (u ≈ 0.77), whereas Qwen3-30B-A3B-Instruct exhibits
only weak scaling (u ≈ 0.15). The 4B models do not meaningfully distinguish
proportional and constant-capacity fits. This data suggests that as g grows, the
oracle mask involves an expanding set of prefix monomials, and limited effective
prefix utilization pushes models toward the partial-information regime.

6.3 Frontier LLMs
We now extend our analysis of depth-induced collapse in small models to larger
systems: GPT 5.2 with extended Thinking, Claude Opus 4.5 with max Thinking,
and Gemini 3 Pro (Jan 2026). Because frontier models typically generate
extremely long reasoning traces on this task, it was financially prohibitive to
replicate the full experimental protocol from Section 6.2. Nonetheless, the findings
in the previous section provide a strong prior that guides our interpretation of
the observed trends in γg for these larger models, even with fewer data points.
In this section, we report results from 60 queries per model, spread across
g ∈ 31, 63, 127 with p = 12 and d = 4. For half of the prompts, the model was
explicitly instructed not to use tool calls; for the other half, it was free to choose
any solution strategy, including tool use.

Frontier models are significantly better. Under the hardest conditions
shown in 5, at which all small LLMs perform at random on the task, frontier
models are still able to solve each step with a very high probability (Figure 6).

Tools stabilize γg over long horizons. Tool-enabled models maintain
near-unity γg even at g=127, far exceeding the trivial baseline γtriv (Figure 7).

These results offer a clear perspective on the Diligent Learner framework and
on multi-step reasoning more broadly. Each reasoning step involves two distinct
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Figure 6: Frontier LLMs have a much higher γg than the smaller LLMs we tried.

requirements: inferring the correct constraints from the available inputs and
data, and executing the computation implied by those constraints. Failure at
either stage causes the reasoning chain to break.

Tool use fundamentally alters this dynamic. By externalizing execution, tools
allow the model to focus primarily on specifying constraints rather than simulta-
neously discovering and implementing the full computation. This separation is
critical for generalization. Prior work on LLM generalization suggests that, ab-
sent tools, success on out-of-distribution reasoning requires sparse compositional
structure within the model’s parameters, enabling both the representation of
constraints and the implicit execution of the induced algorithm. This places a
strong burden on the transformer’s internal weights.

When tools are available, the model instead communicates constraints ex-
plicitly and delegates execution to an external program. This results in a much
sparser effective algorithm at each step, which substantially improves generaliza-
tion and stabilizes stepwise success probability. This mechanism explains why
all tool-using models exhibit dramatically higher and more stable γg than their
no-tool counterparts.

Tool-based reasoning remains imperfect, however, as it still relies on copying
intermediate data through context. A natural extension would allow models
to apply learned programs directly to their inputs, avoiding this degradation.
Notably, the only model to perform well without explicit tool use was Opus, but
closer inspection suggests that it frequently invoked tool-like behavior despite
instructions to the contrary, though such usage was not always transparent.

15



g=63 g=127
Depth g

1e-2

1e-1

1e+0

Ba
ye

sia
n 

In
fe

re
nc

e f
or

 γ
g

ChatG
PT (T.)

ChatG
PT (T.)

ChatG
PT (N

.T.)

ChatG
PT (N

.T.)

Opus (T
.)

Opus (T
.)

Opus (N
.T.)

Opus (N
.T.)

Gemini (T
.)

Gemini (T
.)

Gemini (N
.T.)

Gemini (N
.T.)

Frontier LLM γg

Random Guess

Figure 7: Frontier models that use tool calls (denoted with T.) have a much larger
γg for this task and see minimal degradation, even at very significant model depths.
When models are instructed not to use tools (denoted by N.T.), performance drops
substantially as problem size increases. Opus often still used tool calls even when
instructed not to, leading to inflation of its no-tools score, though it was challenging to
determine exactly which instances used tools. The bars show the Bayesian confidence
interval with a random prior as supported by the results in Section 6.2.
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7 Discussion
In this work, we offer a rigorous empirical test of the Diligent Learner hypothesis
by introducing a GF(2) circuit reconstruction benchmark that is explicitly
adversarial to common shortcut strategies. The task forces a model to maintain
state and repeatedly fuse accumulated historical context with newly observed
evidence at every step, rather than relying on shallow pattern matching. Across
this benchmark, we observe a clear divide in behavior: smaller language models
exhibit a superlinear decline in γ as problem depth increases, effectively acting
as partial-information estimators that cannot preserve the needed state. In
contrast, frontier models that leverage tools maintain high γ over long sequences
by delegating state tracking and verification to external mechanisms. Within the
Diligent Learner framework, this suggests that progress toward “superintelligence”
depends less on scaling test-time compute or deepening search, and more on
architectures that can build and use tools.

Impact Statement
This work is theoretical. It raises no direct ethical, safety, or environmental
concerns. We study conditions under which the Diligent Learner framework fails,
introduce a benchmark that exposes this failure mode, and provide empirical
evidence that stepwise reasoning degrades with depth in current models. We also
show that explicit tool construction can mitigate this degradation by stabilizing
long-horizon reasoning. These results inform the design and evaluation of future
reasoning systems but do not introduce immediate real-world risks.
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A Proofs
Lemma 4.1 (Monomial firing probability at fixed Hamming weight). Fix
integers p ≥ d − 1 ≥ 1 and w ∈ {0, . . . , p}. Let v be uniform over the Hamming
sphere {v ∈ {0, 1}p : ∥v∥0 = w}, and fix any S ⊆ [p] with |S| = d − 1. Define
MS(v) :=

∏
i∈S vi. Then

Pr
[
MS(v) = 1

]
=


(

w
d−1

)(
p

d−1
) =

(
p−(d−1)
w−(d−1)

)(
p
w

) if w ≥ d − 1,

0 if w < d − 1.

Proof. Write supp(v) := {i ∈ [p] : vi = 1}, so |supp(v)| = w and supp(v) is
uniform over all

(
p
w

)
subsets of [p] of size w. Note that MS(v) = 1 if and only if

vi = 1 for every i ∈ S, which is equivalent to S ⊆ supp(v). If w < d − 1, no set
of size w can contain S, hence Pr[MS(v) = 1] = 0.

Assume now that w ≥ d − 1. The number of supports T ⊆ [p] with |T | = w
that contain S is the number of ways to choose the remaining w−(d−1) elements
of T from the p − (d − 1) coordinates in [p] \ S, namely

(
p−(d−1)
w−(d−1)

)
. Since all

(
p
w

)
supports are equally likely,

Pr[MS(v) = 1] =

(
p−(d−1)
w−(d−1)

)(
p
w

) =
(

w
d−1

)(
p

d−1
) .

Lemma 4.2 (Bayes masking given observed (a, v)). Assume the instance dis-
tribution samples S1, . . . , Sg, Sg+1 i.i.d. uniformly from {S ⊆ [p] : |S| = d − 1},
independently of the oracle samples. Fix a step g and condition on a realized
example (a, v) with ∥v∥0 = w⋆. Let

ρ := ρ(w⋆) = Pr
S

[
MS(v) = 1

]
=

(
w⋆

d−1
)(

p
d−1

) , m := m(a).

Then, marginalizing over the unknown prefix supports (S1, . . . , Sg), for each
r ∈ {0, 1},

Pr
[
B(a, v) = r | a, v

]
= 1

2
[
1 + (−1)r(1 − 2ρ)m

]
.

Moreover, B(a, v) is independent of b = Mg+1(v) given (a, v), and since y =
B(a, v) ⊕ b we have ∣∣Pr[y = b | a, v] − 1

2
∣∣ = 1

2 |1 − 2ρ|m.

Proof. Condition on a realized (a, v) with ∥v∥0 = w⋆. For each j ≤ g with
aj = 1, the random support Sj is uniform over {S ⊆ [p] : |S| = d − 1}. Define
Xj := 1{Sj ⊆ supp(v)}. Then Xj ∼ Bernoulli(ρ) with

Pr[Xj = 1 | a, v] =
(

w⋆

d−1
)(

p
d−1

) =: ρ,
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since exactly
(

w⋆

d−1
)

of the (d − 1)-subsets of [p] lie inside the fixed set supp(v)
of size w⋆. Because S1, . . . , Sg are i.i.d., the collection {Xj : aj = 1} consists of
m :=

∑
j≤g aj independent Bernoulli(ρ) bits. Therefore B(a, v) =

⊕
j:aj=1 Xj

is the parity of m i.i.d. Bernoulli(ρ) bits, and the standard parity identity yields

Pr[B(a, v) = 1 | a, v] = 1 − (1 − 2ρ)m

2 , Pr[B(a, v) = 0 | a, v] = 1 + (1 − 2ρ)m

2 .

Independence of B(a, v) and b = Mg+1(v) given (a, v) holds because B(a, v)
depends only on (S1, . . . , Sg) while b depends only on Sg+1, and these supports
are independent under the instance distribution. Finally, since y = B ⊕ b, we
have y = b iff B = 0, yielding

Pr[y = b | a, v] = Pr[B(a, v) = 0 | a, v] = 1 + (1 − 2ρ)m

2 .

Lemma 4.3 (History-only is prior guessing). Assume the instance distribution
samples supports S1, . . . , Sn i.i.d. uniformly (with replacement) from {S ⊆ [p] :
|S| = d − 1}. Then for any g < n, conditioned on the revealed prefix Pg, the
next support Sg+1 is uniform over {S ⊆ [p] : |S| = d − 1} and independent of
Pg. Consequently, any history-only estimator satisfies Pr[Ŝ = Sg+1] ≤ 1

( p
d−1)

.

Proof. Let U be the uniform distribution over {S ⊆ [p] : |S| = d − 1}. By
assumption, Sg+1 ∼ U and Sg+1 ⊥ (S1, . . . , Sg). Since Pg is a deterministic
function of (S1, . . . , Sg), we also have Sg+1 ⊥ Pg, hence the conditional law of
Sg+1 given Pg remains U . Therefore any estimator based only on Pg succeeds
with probability at most maxS Pr[Sg+1 = S] = 1/

(
p

d−1
)
.

B Other Simulations

C The Monomial can be Recovered in Polyno-
mial Time

Given Pg, a solver can form residual labels

r(k) := y(k) ⊕
g⊕

j=1
a

(k)
j Mj

(
v(k)) = Mg+1

(
v(k)), (8)

so recovery reduces to identifying the unknown degree-(d − 1) support Sg+1 from
labeled payloads.
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Figure 8: As both g and p increase, the probability of an estimator with imperfect
information begins to collapse to zero. Only Estimator A is able to consistently
produce the next monomial. The above heatmap was constructed through generating
200 circuits for each combination of hyperparameters and computing the corresponding
γg for each p. This diagram shows the performance when not using the adversarial
dataset construction.

Let K+ := {k : r(k) = 1} and T := |K+|. Consider the decoder

Ŝ :=
⋂

k∈K+

supp
(
v(k)), (9)

which outputs Ŝ if T ≥ 1 and |Ŝ| = d − 1, and otherwise declares failure.

Theorem C.1 (Poly-time recovery under fixed-weight payloads). Fix an instance
and assume payloads are i.i.d. uniform on {v ∈ {0, 1}p : ∥v∥0 = w⋆} with
w⋆ ≥ d−1. Let ρ = ρ(w⋆) = Pr[Mg+1(v) = 1] and T = |K+|. Then Pr[T = 0] =
(1 − ρ)K . Moreover, conditioned on T ≥ 1, the decoder succeeds with probability
at least

1 − min
{

1, (p − (d − 1))
(w⋆ − (d − 1)

p − (d − 1)

)T }
. (10)

Proof. If r(k) = 1 then Mg+1
(
v(k)) = 1, which is equivalent to Sg+1 ⊆ supp

(
v(k)).

Thus for every k ∈ K+ we have Sg+1 ⊆ supp
(
v(k)), and hence

Sg+1 ⊆
⋂

k∈K+

supp
(
v(k)) = Ŝ.

Therefore, conditioned on T ≥ 1, the intersection decoder can fail only if Ŝ
contains at least one extraneous coordinate i /∈ Sg+1, i.e., some i ∈ [p] \ Sg+1
appears in every positive support.

Fix any i /∈ Sg+1 and consider a single draw v conditioned on r = 1 (equiv-
alently, Sg+1 ⊆ supp(v)). Under the fixed-weight model, after forcing ones on
Sg+1, the remaining w⋆ − (d−1) ones are chosen uniformly among the p− (d−1)
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Figure 9: The figure above shows how γg changes for Estimators A, B, C, and
D when the data is biased adversarially (as in the results so far) preventing
identification monomials from frequency statistics, and without de-biasing.

Table 1: Likelihood-based fit of LLM accuracy to an effective-prefix
model. Accuracy as a function of prefix length g is fit using two one-parameter
models for the effective number of known prefix terms: proportional k = ug
and constant-capacity k = v. Fits use the binomial log-likelihood aggregated
across depths; models are compared via AIC. Reported ∆AIC = AICconstant −
AICproportional, so positive values favor proportional scaling. Values ∆AIC < 2
indicate no meaningful distinction.

Model u v ∆AIC Better
Qwen3-30B-A3B-Instruct-2507 0.15 0.00 2.21 u
Qwen3-30B-A3B-Thinking-2507 0.47 0.00 228.08 u
Qwen3-4B-Instruct-2507 0.08 0.00 2.32 u
Qwen3-4B-Thinking-2507 0.05 0.00 0.00 –

coordinates in [p] \ Sg+1. Hence

Pr[i ∈ supp(v) | r = 1] = w⋆ − (d − 1)
p − (d − 1) .

Now condition on the event {T = |K+|} and on the index set K+ itself. Because
the original examples are i.i.d., the payloads {v(k)}k∈K+ are i.i.d. draws from
the conditional distribution (v | r = 1), so

Pr
[
i ∈ supp(v(k)) ∀k ∈ K+

∣∣∣ T
]

=
(w⋆ − (d − 1)

p − (d − 1)

)T

.

Taking a union bound over the p − (d − 1) possible extr coordinates gives

Pr
[
Ŝ ̸= Sg+1 | T

]
≤

(
p − (d − 1)

)(w⋆ − (d − 1)
p − (d − 1)

)T

,
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which implies (10). Finally, since T =
∑K

k=1 1{r(k) = 1} with Pr[r(k) = 1] =
ρ = ρ(w⋆), we have Pr[T = 0] = (1 − ρ)K .

Corollary C.2 (High-probability recovery with K samples). In the setting of
Thm. C.1, let ρ := ρ(w⋆) = Pr[Mg+1(v) = 1] and α := w⋆−(d−1)

p−(d−1) ∈ [0, 1). Fix
δ ∈ (0, 1). For α ∈ (0, 1) define

T0 :=
⌈

log
(
2(p − (d − 1))/δ

)
log(1/α)

⌉
(and if α = 0, take T0 := 1).

If K ≥ 1
ρ max{2T0, 8 log(2/δ)}, then the decoder in (9) outputs Ŝ = Sg+1 with

probability at least 1 − δ.

Proof. Let T = |K+| =
∑K

k=1 1{r(k) = 1}. Since r(k) = Mg+1
(
v(k)) and the

payloads are i.i.d., we have T ∼ Bin(K, ρ).
By Thm. C.1, for any t ≥ 1,

Pr[Ŝ ̸= Sg+1 | T = t] ≤
(
p − (d − 1)

)
αt.

Hence
Pr[Ŝ ̸= Sg+1] ≤ Pr[T < T0] + Pr[Ŝ ̸= Sg+1 | T ≥ T0].

For the first term, our lower bound on K implies Kρ/2 ≥ T0, so by a
multiplicative Chernoff bound,

Pr[T < T0] ≤ Pr
[
T ≤ 1

2 Kρ
]

≤ exp
(
− 1

8 Kρ
)

≤ δ/2,

where the last inequality uses Kρ ≥ 8 log(2/δ).
For the second term, on T ≥ T0 we have

Pr[Ŝ ̸= Sg+1 | T ≥ T0] ≤
(
p − (d − 1)

)
αT0 ≤ δ/2,

by the definition of T0 (and trivially if α = 0). Combining the two bounds yields
Pr[Ŝ ̸= Sg+1] ≤ δ.

Lem. 4.2 shows a per-sample obfuscation property: marginalizing over the
unknown prefix supports, each labeled example provides only exponentially small
Bayes advantage about the next-term signal unless one conditions on the revealed
prefix. In the ideal balanced case ρ(w⋆) = 1/2, this advantage is 0 whenever
m(a) ≥ 1. In our implementation we resample a1, . . . , ag until m(a) ≥ 1 to
remove the trivial leakage case m(a) = 0. Lem. 4.3 rules out history-only
shortcuts under the instance distribution, since Sg+1 remains uniform given the
revealed prefix.

Finally, Thm. C.1 (and Corollary C.2) show that a diligent solver can subtract
the prefix mask to obtain residual labels r(k) = Mg+1(v(k)) and recover tg+1 in
polynomial time from K = O

( 1
ρ(w⋆) log(p/δ)

)
samples with failure probability at

most δ (for fixed d and constant ρ(w⋆)). Together, these properties justify using
γg in (4) as an operational measure of step success in our benchmark.
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Efficient validation. Given the instance specification (in particular Sg+1)
and a candidate monomial t̃, the validator parses t̃, rejects unless it contains
exactly one address variable (which must be ag+1) and exactly d − 1 distinct
payload variables, then accepts iff the parsed payload index set S̃ equals Sg+1.This
runs in time O(|t̃| + d log d) worst-case (or O(|t̃| + d) expected with hashing).
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