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Abstract

High computational costs and strict privacy constraints currently bottleneck the post-training
of Large Language Models. We introduce Zero-Knowledge Learning (ZKL), an online
protocol based on Evolution Strategies (ES) that enables continuous learning from private
inference streams. Each inference request contributes at most a single bounded scalar reward
associated with a random perturbation seed. Prompts, completions, and token-level traces are
never transmitted. In the absence of auxiliary information, semantic reconstruction of individual
prompts from these scalar observations is information-theoretically infeasible. Residual privacy
risks arise only through aggregate influence on the model parameters, which is inherently
sourceless and dominated by population-level effects rather than individual records. We also
optimize the protocol to be implemented with virtually no speed degradation. Experiments
demonstrate that ZKL can outperform GRPO by up to 15× in sample efficiency across some
reasoning and alignment tasks.
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1 Introduction

Post-training has recently emerged as a central focus in the development of Large Language Models
(LLMs). These techniques have become indispensable, unlocking advanced reasoning capabilities
through Reinforcement Learning with Verifiable Rewards (RLVR) [13] while simultaneously serving as
the primary mechanism for safety and alignment [21]. Driven by the demand for enhanced capability
and robust alignment, the computational budget allocated to post-training has surged; once a
marginal expense relative to pre-training, post-training costs are projected to rival or even surpass
pre-training expenditures [21]. Conspicuously, this rapid advancement has predominantly relied on
gradient-based RL paradigms through dominant methods such as Proximal Policy Optimization
(PPO), Direct Preference Optimization (DPO), or Group Relative Policy Optimization (GRPO)
[32, 27, 33]. While these methods have proven effective, this work challenges the ubiquity of this
paradigm by demonstrating the emerging efficacy of zero-order methods.

Despite their dominance, gradient-based RL methods are beset by multiple structural liabilities.
These algorithms are notoriously sample inefficient [39], requiring prohibitive amounts of interaction
data to achieve convergence. This inefficiency is compounded by high gradient variance [30], which
introduces significant stochasticity and destabilizes the optimization landscape. Moreover, precise
temporal credit assignment remains an unsolved challenge, often necessitating complex and biased
proxy rewards [46]. Beyond these stability issues, RL performance is exceedingly brittle, exhibiting
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Figure 1: This figure illustrates the Zero-Knowledge Learning protocol and its separation between
private inference and parameter updates.

extreme sensitivity to hyperparameters and the specific cognitive priors of the initial model [6].
Finally, the paradigm is threatened by a tightening data bottleneck: high-quality, task-specific
training data is difficult to procure [40], a crisis exacerbated by increasingly stringent privacy
regulations that restrict the availability of public data for training [20].

In light of these structural limitations, Zero-Order (ZO) optimization has staged a formidable
resurgence as a viable alternative to gradient-based learning. Malladi et al. [15] first demonstrated
the efficacy of ZO methods for fine-tuning LLMs on downstream tasks, a finding subsequently
expanded by a suite of advanced techniques including ZO-Bench [44], and DPZero [45] which
established ZO’s utility for both classification and privacy-preserving adaptation. However, these
earlier iterations largely failed to compete directly with state-of-the-art Reinforcement Learning
(RL) baselines until the recent breakthrough by Qiu et al. [24]. Their work empirically demonstrated
that ZO optimization could consistently outperform GRPO on the Countdown reasoning task,
achieving superior sample efficiency and a more favorable KL-divergence tradeoff [22]. Furthermore,
the applicability of this paradigm was significantly broadened by Sarkar et al. [31], who established
that ZO methods can be effectively applied to Low-Rank Adaptation (LoRA) updates.

Although these early results are encouraging, Zero-Order evolutionary approaches have not
yet seen broad adoption over well-established gradient-based techniques. To address this shortfall,
we present Zero-Knowledge Learning (ZKL) as a competitive framework for post-training
contemporary LLMs. Our experiments show that ZKL offers superior sample efficiency and speed,
exhibits robustness across a wide range of model scales and task types, and maintains structural
privacy, thereby enabling the use of previously inaccessible datasets for post-training. [20].

Our precise contributions are summarized as follows:

• Efficient Implementation: We derive an optimal minibatching strategy for Online ES,
achieving up to 3× greater sample efficiency than Qiu et al. [24] and 15× over GRPO, provided
alongside a highly efficient open-source implementation.

• The ZKL Protocol: We formalize a privacy-preserving training framework that communicates
only perturbation seeds and scalars, enabling the use of private, online inference as training
data.
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• Experimental Validation: We show the efficacy of ZKL as a post-training procedure for
multiple model sizes and both reasoning and RLHF tasks.

• Inference-Time Training: We demonstrate the practicality of ZKL for inference time
optimization using multi-objective loss functions.

• Theory: We prove that ZKL functions as an unbiased estimator of the optimal update
direction, ensuring consistent convergence properties, and discuss theoretical privacy analysis.

2 Background and Related Work

Although the Zero-Knowledge Learning (ZKL) protocol offers a generalized framework for derivative-
free optimization, we position this work squarely within the domain of post-training pre-trained
Transformers. This regime is currently dominated by gradient-based paradigms, ranging from on-
policy reinforcement learning methods like PPO [32] and GRPO [33] to preference-based objectives
such as DPO [27] and IPO [8]. While significant research has focused on mitigating the sample
inefficiency of these methods [12, 28], ZKL diverges from this trajectory by abandoning the gradient
requirement entirely.

In the following sections, we review successful applications of zero-order (ZO) optimization,
tracing the evolution from finite-difference methods to recent hyperscale Evolution Strategies (ES),
and identifying the specific privacy and scalability gaps ZKL is designed to close.

2.1 Zero-Order Optimization for LLM Fine-Tuning

Zero-Order (ZO) optimization refers to derivative-free algorithms that optimize an objective relying
solely on function evaluations [36, 19]. In deep learning, this is predominantly realized through
gradient approximation via finite differences, a technique rooted in Simultaneous Perturbation
Stochastic Approximation (SPSA) [35]. Malladi et al. [15] successfully adapted this paradigm for
language models (MeZO), using random weight perturbations to reduce memory overhead, with
subsequent work improving convergence via momentum and differential privacy [45]. However,
while ZO methods can match first-order performance on classification tasks [44], finite-difference
approximations have historically failed to compete with gradient-based RL on complex reasoning
and generation tasks [24].

2.2 Evolution Strategies for Post-Training

Distinct from finite-difference approximations, Evolution Strategies (ES) optimize a policy directly
in parameter space without explicitly approximating a gradient [29]. Canonical implementations
[30, 41] operate by instantiating a population of K agents perturbed by Gaussian noise to compute
a weighted update direction.

While long considered intractable for LLMs due to the “curse of dimensionality” [11], Qiu et al.
[24] recently challenged this assumption, demonstrating that ES can outperform RL baselines on
reasoning tasks using extremely small populations (K ≈ 32). However, in order to reduce variance,
Qiu averaged fitness over the entire prompt dataset, multiplying effective rollouts by the size of
their dataset.
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To address this, Sarkar et al. [31] proposed applying ES to Low-Rank Adaptation (LoRA)
matrices (EGGROLL). While demonstrating impressive results, their work assumes that ES for
LLMs is most effective with massive populations (K > 1000). However, our results would argue that
this assumption is flawed. Furthermore, if K is kept small (as validated by Qiu et al.), traditional
full-parameter ES is no longer memory-constrained and can run fully instantiated models in parallel
at peak performance without the need for LoRA.

2.3 Privacy, Federated Learning, and Zero-Knowledge Proofs

Parallel to these algorithmic developments, we must distinguish Zero-Knowledge Learning (ZKL)
from the cryptographic primitive of Zero-Knowledge Proofs (ZKPs) [9]. While ZKPs rely on crypto-
graphic hardness, ZKL is a training protocol designed to optimize agents with “zero knowledge” of
intermediate tokens. This ensures sensitive content remain siloed on the deployment side, aligning
closely with communication-efficient Federated Learning (FL) [43, 23]. Unlike traditional FL which
aggregates gradient vectors [42], ZKL operates in the regime of only integer perturbation seeds and
scalar rewards.

We note that ZKL provides structural privacy (hiding the training process), not inherent
mathematical differential privacy regarding the output model [37]. While techniques like DP-Zero
[45] could theoretically be integrated, ZKL focuses on enabling training on private inference streams.

2.4 Position of ZKL

Our work positions ZKL at the intersection of these paradigms, synthesizing the parameter efficiency
of small-population ES with the data scalability required for industrial application. We adopt the
low-population hypothesis (K ≪ d) of Qiu et al. [24] to eliminate memory overhead, but reject their
prohibitively expensive full-dataset update rule. Instead, we introduce a stochastic minibatching
formulation re-engineered for asynchronous, online inference, allowing ZKL to operate on real-time
deployment streams rather than static datasets. By combining these refinements, we achieve a up
to 3× improvement in sample efficiency over Qiu et al.’s baselines.

3 Zero-Knowledge Learning

We introduce Zero-Knowledge Learning as an efficient algorithmic variant of standard ES methods,
and enables a privacy preserving protocol during training.

3.1 Weight Updates

ZKL builds on traditional Evolution Strategies (ES). As in ES and other descent algorithms,
it iteratively updates its parameters in some direction u with a learning rate α. Traditional ES
algorithms estimate this update step u by forming a weighted sum of Gaussian noise δj ∼ N (0, σI),
over the parameter space δj ∈ R|θ|. These small noise perturbations δj paired with their given
weights wj are then summed to get the update step u =

∑
wjδj .

When using ES to post-train LLMs, models are updated for T iterations, with each step sampling
a fixed K perturbations δj . For each mutated model with perturbed parameters θ̃tj = θt + δj , ES
then generates weights wj by doing a rollout over the entire prompt dataset, and then averaging the
corresponding rewards rij from every rollout, producing average reward scores r̄j for each model
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pertrubation. With K rewards for each model perturbation, ES then generates weights wj by
normalizing r̄j .

In ZKL (Algorithm 1), we assign each seed a unique minibatch of the data instead of reusing
the same prompt over multiple model perturbations. This introduces a new hyperparameter B for
the minibatch size. Thus, each step yields B ×K unique prompts, agent responses, and individual
rewards. We present a proof in Appendix ?? that this modification still serves as an unbiased
gradient estimator.

This variant is more powerful than standard ES since it mirrors inference time
dynamics; every prompt is only accessed once, and the procedure can scale to online distributed
training on arbitrarily large datasets. However, we still need to contend with the performance
constraints that are caused by hosting and running inference on many perturbations of a model.
For ES to work at all, every model performing inference must be different by exactly the noise
constructed by its respective seed. Because floating-point arithmetic is not reversible, restoring
weights after perturbation usually requires storing a full copy to avoid cumulative round-off. Storing
this clone in GPU or CPU RAM or disk is prohibitively slow, inefficient, and expensive for modern
LLMs, which can have over a trillion parameters.

However, this standard limitation can be overcome through an implementation trick; we can
operate in higher precision when doing parameter transformations since fp16 and bf16

additions or subtractions can be recovered exactly when carried out in fp32. We generate noise and
apply each perturbation in high precision, then downcast for execution whenever the seed changes.
This lets us add or remove random perturbations without extra GPU memory or compute during
inference, because the model parameters themselves are updated in place. Changing the seed does
introduce an O(#params) cost, but memory overhead can be kept negligible by offsetting updates
and tiling parameter operations.

ZKL runs vLLM for inference and Ray for data-parallel and distributed scaling [10, 18]. We
introduce a custom vLLM handler that wraps the base LLM worker and controls both random
parameter perturbations and generation. The implementation is fully compatible with PyTorch’s
automatic differentiation system, allowing experimentation with hybrid integrations that combine
post-training and optimization techniques.

Our code is available on GitHub: [link redacted]

3.2 The Protocol

This section introduces the ZKL protocol (Figure 1) and explains its appeal. At inference
time, each request is served by a model instance defined by a perturbation seed, which produces
outputs scored locally by a verifier or reward function. Only scalar rewards, aggregated across
examples and paired with their seeds, are returned for training. Each prompt participates in training
through at most one bounded scalar reward, observed without access to prompt content, completion
text, or persistent user identity. The model provider regenerates perturbations from the seeds,
aggregates rewards across instances, and applies an Evolution Strategies update to produce a new
checkpoint. Prompts, contexts, and token-level outputs never leave deployment, so post-training
proceeds without exposure to private inference data. This design enables capabilities unavailable to
standard post-training methods.

Better Data. Frontier labs develop models and earn revenue from inference, but realistic applica-
tions are expensive to emulate and too risky to train on directly. Live production traffic includes
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Algorithm 1 Training Procedure for ZKL

Require: Steps T , batch size B, pop K, noise σ, learning rate α
Ensure: Trained parameters θT

Initialize parameters θ0, dataset D, reward function R(x, y)
for t = 1 to T do ▷ Iterate over T batches

for j = 1 to K do ▷ Create K perturbed instances

Sample perturbation δj ∼ N (0, σ2I)
r̄j ← 0
for i = 1 to B do ▷ Rollouts for perturbation j

Sample xij ∼ D (without replacement)
yij ← π(xij | θt + δj)
r̄j ← r̄j +

1
B
R(xij , yij)

end for
end for
r̄ ← 1

K

∑K
j=1 r̄j ▷ Population reward mean

s← StdDev({r̄j}Kj=1) ▷ Population reward std

wj ← (r̄j − r̄)/(s+ ϵ) ▷ ϵ stabilizes normalization

θt+1 ← θt + α
∑K

j=1 wjδj ▷ ES update

end for
return θT

private user prompts, proprietary corporate information, and sensitive government tasks, which
makes using it for training both legally and ethically fraught. In contrast to RL approaches like
GRPO, ZKL relies on a single scalar reward per seed and never inspects token-level data. Given
verifiable rewards or simple behavioral indicators, it can learn without seeing either the inputs or
the outputs. Since the provider only receives an average reward and a random seed, reconstructing
the semantic content of individual prompts is information-theoretically underdetermined. Rewards
can be derived from LLM-based evaluators or from proxy signals that do not depend on raw content,
such as whether a user switches to or retries with another model. The distributed architecture
supports incremental updates while keeping the service running smoothly.

Inference-Time Learning. ZKL also aligns with the economic realities of LLM development.
Instead of depending on an expensive, distinct training stage, it transforms paid inference into the
driving force behind post-training. Because prompts are never reused, ongoing inference continuously
produces new training signals.

3.3 Experiment and Results

We present a series of experiments fine-tuning Qwen2.5 and 3 on the Countdown and HH
datasets to evaluate this new learning paradigm and show that ZKL is highly sample efficient, fast,
and exhibits convergence behavior consistent with established post-training methods [26, 25, 22, 2].
Our results reveal three key findings that position ZKL as a strong candidate for post-training:
(i) We identify a favorable K–B tradeoff that yields substantial gains in sample efficiency which,
when combined with speed improvements, makes ZKL exceptionally efficient in practice; (ii) ZKL
proves robust across a wide range of model sizes; (iii) ZKL operates effectively in a fully distributed
online learning regime with no prompt repetition, matching the standard online setting and enabling
cross-training.
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Figure 2: Compute-optimal tradeoff between ES population size K and per-perturbation batch
size B under a fixed two-hour budget on four A100 GPUs for Qwen2.5-7B-Instruct trained on
Countdown and HH datasets. Color indicates achieved validation performance. While the exact
loss landscape and optimal hyperparameters do change with problem, learning rate, and model
size, small populations and batch sizes are generally best under constrained compute. Increasing
population without increasing batch size degrades performance due to higher reward noise. We
found K = 8 and B ∈ 100, 200 to generally perform best across different problems and model sizes.
A batch size of 100 is often preferable to a batch size of 200 in our setup, even if there is a small
performance penalty because it requires less data and converges twice as fast.

3.4 Population and Sample Efficiency

3.4.1 Population and sample size tradeoffs

A core advantage of ES-based post-training is that it avoids token-level credit assignment and
can produce stable updates from only a few rollouts. ZKL improves on prior ES formulations by
minibatching: each perturbation is evaluated on a distinct batch of prompts, and the update uses
only the aggregated rewards. This reduces redundant computation relative to full-dataset evaluation,
and it matches the deployment regime where prompts are effectively non-repeating.

Under a fixed compute budget, the dominant design choice is how to allocate rollouts between the
mutation population K and the per-perturbation batch size B. Larger K explores more directions
in parameter space but increases the variance of the normalized weights unless B is also increased;
larger B reduces reward noise per direction but reduces the number of directions explored. Figure 2
shows a clear compute-optimal tradeoff between K and B on Countdown: performance is best in
the small-population regime, and high-quality updates are achievable with surprisingly small K
when B is chosen to control reward variance.

Across most experiments, K = 8 and B = 100 is a strong default. This configuration yields

7



3×

Figure 3: Sample efficiency comparison measured by total rollouts of a Qwen2.5-3B-Instruct model
trained on Countdown. ZKL, using K = 8 and B = 100 with no prompt reuse, achieves higher
validation performance with substantially fewer rollouts than ES baselines that rely on larger
populations and repeated evaluation on fixed datasets. When training is halted after ZKL completes
one epoch over the data, ZKL has already surpassed the baselines, demonstrating superior rollout
efficiency.

substantially fewer inference rollouts per effective update than GRPO for a given target performance,
while also producing smoother training curves. While the exact optimum shifts with model size
and reward noise, the broader conclusion is robust: ZKL operates best with small populations
and moderate mini-batches, which is precisely the regime compatible with production inference
constraints.

3.4.2 Increased sample efficiency

In the production setting, the relevant metric is reward improvement per unit inference compute.
On that metric, ZKL is favorable because it avoids repeated evaluation of identical prompts across
perturbations and concentrates compute on rollouts that directly contribute to the update.

Figure 3 shows the rollout–performance tradeoff across methods. For an equivalent number of
rollouts, ZKL reaches higher validation performance earlier and converges with substantially fewer
total evaluations than prior ES variants by up to 3×. This implies an up to 15× improvement in
data efficiency over GPRO from the baseline presented in Figure 6 of Qiu et al. [24]. This reflects
both improved sample efficiency and better utilization of inference compute: ZKL allocates nearly
all rollouts to unique, update-relevant prompts, whereas full-dataset ES repeatedly expends compute
on redundant evaluations that do not change the update direction. As a result, ZKL delivers greater
reward improvement per unit inference compute, which is the dominant constraint in deployed
systems. This property makes ZKL particularly well suited to production environments, where
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Figure 4: End-to-end training step time across implementations and model sizes on Countdown.
Bars show wall-clock duration per step for a baseline implementation, a prior ES setup with large
populations and full-batch evaluation, and ZKL with compute-optimal mini-batching. Error bars
denote step-to-step variability. ZKL reduces step time by an order of magnitude or more across
model sizes, indicating that perturbation overhead is negligible relative to rollout computation. All
runs were conducted with DP=4, TP=1 on A100s.

inference throughput, not offline optimization time, defines the effective post-training budget.

Inference Speed. In practice, rollout computation dominates per-step time in the small-population
regime. Figure 4 (timing) demonstrates that replacing full-dataset ES evaluation with ZKL’s
mini-batched online evaluation produces substantial wall-clock speed gains fro their original imple-
mentation by about 10×, and that choosing the compute-optimal (K,B) setting further increases
throughput to up to 50×.

3.5 Performance gains

Data and compute scaling. Because ZKL is online and does not reuse prompts within an
update step, it scales naturally with large inference streams. The effective dataset can grow without
requiring prompt replay or centralized storage. Empirically, increasing the number of rollouts
improves validation reward fashion until saturation, after which we obverse a small degradation
from the optimal though above the original. It seems that the highest accuracy achieved by a model
through ZKL depends on the task and the model capacity which is standard post-training behavior
(Figure 5).

3.6 Performance is equivalent when using online regimes

The viability of deploying ZKL in production depends not only on its peak performance, but also
on how predictable and safe its optimization dynamics are. By tracking off-target degradation, we
provide crucial evidence that the model can be selectively fine-tuned without catastrophically losing
its broader foundational skills or drifting into unintended behaviors. In parallel, the hybrid reward
function framework acts as a stand-in for real-world conditions, where models must simultaneously
optimize for multiple objectives across heterogeneous data distributions. Taken together, these two
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Figure 5: The final performance after ZKL training on Countdown seems decided by intial model
capacity; notably Qwen3-4B-Instruct-2507 outperforms much larger models and still improves. Bars
represent Qwen models trained with ES (p = 8, batch 100/seed, σ = 0.001, SGD lr = 5× 10−4). A
deeper exploration of what about model capacity makes ZKL effective is left for future research.
Solid regions denote initial validation reward; translucent extensions show improvement to peak.
While performance generally scales with capacity, relative gains diminish, and the 4B model (Qwen3)
notably outperforms the 14B and 32B variants. Models ≤14B converged (peaked then degraded),
whereas the 32B model continued improving until termination at ≈100 GPU-hours. Runs utilized
4×A100 GPUs with memory-optimized parallelism: DP=4/TP=1 for ≤7B; DP=4/TP=2 for 14B
and 32B.

metrics demonstrate that the ZKL framework captures the core capabilities needed to underpin safe
production deployment, beyond the engineering considerations outlined in Sections 3.1 and 3.2.

3.6.1 Scaling

Across tasks, the strongest determinant of final performance is base-model capacity (Figure 5).
Larger models both improve faster and reach higher plateaus under the same budgets, and some
tasks only become learnable once the model exceeds a capacity threshold. This is most evident
in our multi-task results, where reasoning tasks with sparse verifiable rewards require larger base
models to show consistent improvement. The implication is that ZKL does not eliminate the need
for capable pretraining priors, but it does provide an efficient and stable mechanism to exploit them
under privacy constraints.
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Figure 6: Simultaneous and cross-objective optimization training Qwen2.5-3B-Instruct with ZKL
on the HH and Countdown datasets. Left: Mixed-stream training on Countdown and HH-RLHF
with summed rewards improves both objectives smoothly. Right: Cross-objective validation
shows no systematic pre-convergence degradation on held-out objectives, suggesting a lower risk of
misalignment when training on other objectives.

3.6.2 Cross training works

Optimizing with private or partially observed feedback introduces failure modes uncommon in
standard post-training. Hidden prompts, tokens, or outputs make errors harder to diagnose and
regressions easier to miss. We highlight three risks and how ZKL mitigates them.

Hidden misalignment. There is a danger of reward hacking and subtle misalignment when the
training procedure cannot be closely inspected. However, since this system would be deployed at
scale, the model would have to be capable of doing many tasks and would likely have a reward
function that integrates many goals which would prevent overfitting to a specific domain. As shown
in the left of Figure 6, ZKL supports training on hybrid objectives that have different relative
weights or magnitudes. We see when trained on a dataset containing half HH and half Countdown
data, the validation on both subsets of the data increases during training, despite their dramatically
different reward score. Notably, neither task reaches the same final performance they reach when
trained independently, though a deeper analysis as to why this happens is outside the scope of this
work.

Off-target degradation. Private reward optimization can improve a narrow objective while
silently harming unmeasured tasks. As shown on the right of Figure 6 supports these claims, we
do not see a significant degradation in the Countdown task when trained in HH or in the HH task
when trained in countdown until convergence. As mentioned in Section 3.6.1, we notice general
degradation in model performance in both the trained and untrained tasks after convergence; this
might be caused by the model leaving the locally linear active parameter space that allows ES
learning to function. Additionally, because ZKL supports multi-objective optimization, reward
functions that incentives harmlessness can be optimized at the same time to further reduce the risk
of misalignment as shown in the left side of Figure 6.

4 Privacy Guarantees of ZKL

We analyze ZKL under an honest-but-curious provider. The provider follows the protocol but logs
everything it can observe. It knows the base model, the optimizer, the perturbation distribution, and
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all public hyperparameters. The only data-dependent values it receives are, at each step, perturbation
seeds and one bounded scalar reward summary per seed. Prompts, contexts, completions, token
traces, gradients, activations, and user identifiers stay on the deployment side.

The privacy properties of ZKL follow from channel reduction: learning depends on a low-
dimensional transcript.

4.1 Structural privacy by construction

ZKL offers structural privacy. The provider never has access to raw text, token-wise losses, or
any other high-dimensional training signals. Each private interaction can influence training only
through a single bounded scalar associated with a seed. This design removes the main leakage
pathways found in gradient-based RL and federated learning, where per-example vectors can be
aligned, averaged, and exploited. Structural privacy is a property of the system’s architecture, not
a cryptographic guaranty. It constrains what information can cross the boundary during training,
but it does not, on its own, stop the resulting model from potentially encoding that information.

4.2 What the scalar transcript can reveal

A single bounded scalar contains only a small amount of semantic content. Absent strong auxiliary
side information, recovering a specific prompt or completion from seed-tagged scalars is under-
determined: many different interactions can produce the same reward for a given perturbed model.
Although the provider can reconstruct each update ∆θt from the seeds and the model weights, those
weights are themselves functions only of these scalars. There is no token-level trace connecting
information across steps, and no per-example gradient available to invert. This assertion is limited
in scope. ZKL does not claim the worst-case indistinguishability. As with any non-DP training
approach, membership or property inference can still be performed on the final parameters or via
correlations in the observed rewards [34, 16, 5]. The contribution of ZKL is different: it eliminates
direct, high-bandwidth leakage during training, forcing any inference to rely instead on indirect,
aggregate population-level effects.

4.3 Formal guarantees

Structural privacy constrains what the provider observes, not what the final model reveals. If formal
protection against membership and property inference is required, differential privacy must be
enforced. ZKL makes this clean because the provider-visible, data-dependent objects are scalars. If
each scalar reward is privatized on the client side before transmission, then the entire transcript
the provider sees, including all iterates and checkpoints, inherits (ε, δ)-DP by post-processing and
composition [4, 1, 17]. We give a concrete mechanism and accountant in Appendix B, leveraging
recent DP results for zeroth-order learning [38, 45, 14, 3].

5 Discussion and Limitations

Zero-Knowledge Learning is a new promising paradigm for post-training large language models. It
demonstrates that stable, efficient improvement is possible without access to prompts, tokens, or
gradients, and that inference-time feedback can be converted into reliable learning signals under
strict privacy constraints. This addresses a practical gap in existing post-training methods, which
either depend on centralized data access or impose expensive compute costs.
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Our findings suggest that ZKL is primarily constrained by task design and the capacity of the
underlying model, rather than by optimization instabilities or the effects of noise. Although private
optimization can introduce worries about opaque failure modes and reward hacking, ZKL supports
the joint optimization of performance and safety goals, providing a practical way to reduce these risks.
More broadly, ZKL offers a route to turn post-training into an ongoing, privacy-preserving procedure
that continually learns from deployment while remaining compliant with legal and operational
requirements.

The central aim of this work is to present the ZKL protocol as a new algorithmic framework.
The empirical findings are intended as a proof of concept, not as a comprehensive benchmark of all
LLM abilities. Our experiments were confined to two datasets in order to illustrate the algorithm’s
robustness in both verifiable and model-based reward settings. As a result, ZKL’s behavior on more
intricate tasks, such as extended creative writing, advanced software development, or multilingual
translation, has not yet been evaluated. Although the initial results are encouraging, the range
of tasks we considered was constrained by the computational cost of running high-population ES
experiments.

In addition, because this paper concentrates on the architectural design and mathematical
specification of the ZKL update rule, many questions about its long-term scaling properties remain
unanswered. We did not investigate ZKL’s performance on models larger than 32B parameters, nor
did we examine how it behaves under the large, heterogeneous prompt distributions characteristic of
commercial production deployments. We invite researchers with access to more extensive computing
infrastructure to apply the ZKL protocol to a broader suite of benchmarks and to larger model
families, with the goal of more fully characterizing the scaling laws of zero-order post-training. Such
studies are crucial for assessing whether the sample-efficiency improvements observed in our limited
set of tasks extend to the broad competencies expected of frontier models.

Impact Statement

Zero-Knowledge Learning (ZKL) reshapes how Large Language Models are trained by decoupling
the optimization process from direct access to training data. Using a zero-order protocol, ZKL
enables a model to learn from private inference sessions through a minimal interface: an exchange
of scalar rewards and random seeds. This approach overcomes the current data bottleneck in AI,
where the most informative training data are locked behind Zero-Data Retention (ZDR) policies or
strict privacy constraints. The core result of this work is to show that a model can be stably and
efficiently aligned without the training provider ever viewing a prompt, a completion, or a gradient.

ZKL’s architecture offers privacy at a structural level. Because the training provider only receives
bounded scalar signals, they cannot reconstruct the semantic content of a user’s private interactions.
This inherently reduces opportunities for data abuse and large-scale surveillance. In addition, ZKL
supports multi-objective optimization, allowing practitioners to simultaneously target performance
and safety characteristics, such as safety and helpfulness. Our empirical results indicate that ZKL
improves reasoning ability without eroding safety mechanisms or causing off-target degradation,
provided that tasks remain within the model’s competence.

However, ZKL introduces its own set of concerns. Although it conceals the details of the training
interactions, it does not guaranty Differential Privacy (DP) for the resulting model parameters.
Without extra protections, an adversary could still perform membership inference attacks to test
whether a particular record affected training (although we outline an approach to implement this in
the appendix B). There is also a risk of covert misalignment: since the provider cannot see tokens
during private inference, they may miss instances of reward hacking or subtle forms of bias. In
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practice, deploying ZKL safely requires pairing this protocol with local, client-side oversight and
periodic model evaluations to ensure that “zero-knowledge” does not lead to zero scrutiny.
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A Proof of Unbiased Estimator

Formally, we define prompt-response pairs (xi, yi) where yi = f(xi|θ) with f as our model and
θ ∈ Rp as our model parameters. Additionally, models are fine tuned with arbitrary reward functions
R(xi, yi) = R(xi, f(xi|θ)) where response pairs are scored (xi, yi) 7→ [0, 1]. In our setup, ZKL adds
small perturbations δj ∈ Rp to our model parameters θ and generates rewards rij = R(xi, f(xi|θ+δj))
for each prompt xi. Now, taking the expected value of these rewards, we define our parameter-reward
function µθ(δj) := E[R(xi, f(xi|θ + δj))] where µr : Rp → R.

For our two assumptions, we first assume that µθ is locally linear in δj . That is, there exists a lin-
ear functional RT ∈ Rp such that for sufficiently small perturbations δj , we have ∥µθ(δj)−RT δj∥ < ε
for some small ε. Secondly, we assume rewards take the form of rij = RT δj + εij where E[εij |δj ] = 0
and εi is defined as a random variable collectively representing all randomness from prompt selection,
response generation, and reward model scoring.

We now want to show that for iid. δj ∼ N (0, σI), our estimator R̂T =
∑K

j=1wjδ
T
j is unbiased in

the direction of RT , that is there exists an α such that E[αRT − R̂T ] = 0. Expanding our estimator,
we see that:

R̂T =

K∑
j=1

wjδ
T
j =

K∑
j=1

1

s

 1

N

N∑
i=1

rij −
1

NK

N∑
i=1

K∑
j=1

rij

 δTj

Substituting in rij = RT δj + εij , we get:

R̂T =
K∑
j=1

1

s

 1

N

N∑
i=1

(RT δj + εij)−
1

NK

N∑
i=1

K∑
j=1

(RT δj + εij)

 δTj

=
1

s

K∑
j=1

RT δj +
1

N

N∑
i=1

εij −
1

K

K∑
j=1

(
RT δj +

1

N

N∑
i=1

εij

) δTj

=
1

s

K∑
j=1

(
RT δj + ε̄j −RT δ̄ − ε̄

)
δTj

∝ RT
K∑
j=1

(δj − δ̄)δTj +

K∑
j=1

(ε̄j − ε̄)δTj

Where δ̄j :=
1
K

∑K
j=1 δj , ε̄j :=

1
N

∑N
i=1 εij , and ε̄ := 1

NK

∑K
j=1

∑N
i=1 εij . Now, given that p is large

enough that we may treat the δj ∈ Rp as approximately orthogonal and each δj ∼ N (0, σ2I), we
take expectations of R̂T . Since E[εij |δj ] = 0 and εij is independent of δj , we have:

E
[ K∑
j=1

(ε̄j − ε̄)δTj

]
= 0.

Thus,

E[R̂T ] ∝ RT E

[
K∑
j=1

(δj − δ̄)δTj

]
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Write

M :=

K∑
j=1

(δj − δ̄)δTj =

K∑
j=1

δjδ
T
j −K δ̄δ̄T .

Using δj ∼ N (0, σ2I) independently,

E[δjδTj ] = σ2I, =⇒ E
[ K∑
j=1

δjδ
T
j

]
= Kσ2I,

and since δ̄ ∼ N (0, σ
2

K I),

E[K δ̄δ̄T ] = σ2I.

Therefore,
E[M ] = (K − 1)σ2I.

Substituting back,
E[R̂T ] ∝ RT (K − 1)σ2I = αRT ,

for α = (K−1)σ2

s . Hence there exists an α such that

E[αRT − R̂T ] = 0,

so R̂T is unbiased in the direction of RT .

B Even Stronger Privacy Variant Derivation

We assume any noise used to privatize scalar rewards is added by the client or a trusted execution
environment prior to transmission; the provider is not trusted to perform privatization.

To obtain a theorem-grade guarantee against the provider, the cleanest route is to add DP noise
to what the provider sees (the scalars), then invoke post-processing.

Definition B.1 (Neighboring datasets). Let a record be one private interaction (prompt, context,
completion, and its locally computed reward). Two datasets D,D′ are neighbors if they differ in
one record.

Definition B.2 ((ε, δ)-DP [4]). A randomized mechanism M is (ε, δ)-DP if for all neighboring
D,D′ and all measurable events E:

Pr[M(D) ∈ E] ≤ eε Pr[M(D′) ∈ E] + δ.

Mechanism to privatize ZKL. For each perturbation j at step t, privatize the mean reward by
adding Gaussian noise with an unknown seed:

r̃t,j = r̄t,j +N (0, τ2). (1)

Then compute weights wt,j and the update θt+1 using only r̃t,1:K and seeds.

Lemma B.3 (Sensitivity of mean reward). Assume per-record rewards are clipped to [0, 1]. Replacing
one record in a minibatch changes r̄t,j by at most 1/B. Hence the ℓ2 sensitivity of r̄t,j is ∆ = 1/B.
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Figure 7: Compute-optimal tradeoff between ES population size K and per-perturbation batch
size B under a fixed two-hour budget on four A100 GPUs for Qwen2.5-7B-Instruct trained on
Countdown and HH datasets. Color indicates achieved validation performance. While the exact
loss landscape and optimal hyperparameters do change with problem, learning rate, and model
size, small populations and batch sizes are generally best under constrained compute. Increasing
population without increasing batch size degrades performance due to higher reward noise. We
found K = 8 and B ∈ 100, 200 to generally perform best across different problems and model sizes.
A batch size of 100 is often preferable to a batch size of 200 in our setup, even if there is a small
performance penality because it requires less data and converges twice as fast.

Theorem B.4 (Per-perturbation DP via Gaussian mechanism [4]). Under clipping to [0, 1], releasing
r̃t,j = r̄t,j +N (0, τ2) is (ε, δ)-DP for one record in St,j provided

τ ≥
∆
√
2 ln(1.25/δ)

ε
with ∆ = 1/B.

Theorem B.5 (Step-level DP for the provider-visible transcript). At step t, release r̃t = (r̃t,1, . . . , r̃t,K).
If each coordinate uses the same (ε, δ) Gaussian mechanism and the K minibatches are disjoint (as
in ZKL within-step non-reuse), then r̃t is (ε, δ)-DP with respect to any single record at that step,
up to standard group/parallel composition bookkeeping [4].

Theorem B.6 (Transcript DP across many steps (composition)). Let T be the full provider
transcript across T steps: seeds plus privatized scalars plus all iterates (θt). If each step is (εt, δt)-DP

with respect to record-level adjacency, then the full transcript is
(∑T

t=1 εt,
∑T

t=1 δt

)
-DP by basic

composition [4]. Tighter bounds follow via Rényi DP / moments accountant [17, 1].

Remark B.7 (Post-processing closes the loop). All downstream quantities the provider computes
from the privatized scalars, including wt,j , ∆θt, checkpoints, and even a released final model, are
post-processing of the DP transcript. DP is therefore preserved automatically [4].

C Additional Gridsearches
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